
SECURE COMMUNICATION

USING AUTHENTICATED CHANNELS

THÈSE No 4452 (2009)

PRÉSENTÉE À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut de systèmes de communications

SECTION DES SYSTÈMES DE COMMUNICATION

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Sylvain PASINI

ingénieur en systèmes de communications diplomé EPF
de nationalité suisse et originaire de Lancy (GE)

acceptée sur proposition du jury:

Prof. B. Faltings, président du jury
Prof. S. Vaudenay, directeur de thèse

Prof. A. Lenstra, rapporteur
Prof. K. Nyberg, rapporteur

Prof. D. Pointcheval, rapporteur

Lausanne, EPFL
2009

Sylvain Pasini

ii

To my son, Matteo, and to my wife, Nadia.

iii

Sylvain Pasini

iv

Abstract

Our main motivation is to design more user-friendly security protocols. Indeed, if the use
of the protocol is tedious, most users will not behave correctly and, consequently, security
issues occur. An example is the actual behavior of a user in front of an SSH certificate
validation: while this task is of utmost importance, about 99% of SSH users accept the
received certificate without checking it. Designing more user-friendly protocols may be
difficult since the security should not decrease at the same time. Interestingly, insecure
channels coexist with channels ensuring authentication. In practice, these latters may be
used for a string comparison or a string copy, e.g., by voice over IP spelling. The shorter
the authenticated string is, the less human interaction the protocol requires, and the more
user-friendly the protocol is. This leads to the notion of SAS-based cryptography, where
SAS stands for Short Authenticated String.

In the first part of this thesis, we analyze and propose optimal SAS-based message authen-
tication protocols. By using these protocols, we show how to construct optimal SAS-based
authenticated key agreements. Such a protocol enables any group of users to agree on a
shared secret key. SAS-based cryptography requires no pre-shared key, no trusted third
party, and no public-key infrastructure. However, it requires the user to exchange a short
SAS, e.g., five decimal digits. By using the just agreed secret key, the group can now achieve
a secure communication based on symmetric cryptography.

SAS-based authentication protocols are often used to authenticate the protocol messages
of a key agreement. Hence, each new secure communication requires the interaction of
the users to agree on the SAS. A solution to reduce the user interaction is to use digital
signature schemes. Indeed, in a setup phase, the users can use a SAS-based authentication
protocol to exchange long-term verification keys. Then, using digital signatures, users are
able to run several key agreements and the authentication of protocol messages is done by
digital signatures. In the case where no authenticated channel is available, but a public-key
infrastructure is in place, the SAS-based setup phase is avoided since verification keys are
already authenticated by the infrastructure.

In the second part of this thesis, we also study two problems related to digital signatures:

v

Sylvain Pasini

(1) the insecurity of digital signature schemes which use weak hash functions and (2) the
privacy issues from signed documents.

Digital signatures are often proven to be secure in the random oracle model. The role of
random oracles is to model ideal hash functions. However, real hash functions deviate more
and more from this idealization. Indeed, weaknesses on hash functions have already been
discovered and we are expecting new ones. A question is how to fix the existing signature
constructions based on these weak hash functions. In this thesis, we first try to find a better
way to model weak hash function. Then, we propose a (randomized) pre-processing to the
input message which transforms any weak signature implementation into a strong signature
scheme. There remains one drawback due to the randomization. Indeed, the random coins
must be sent and thus the signature enlarges. We also propose a method to avoid the
increase in signature length by reusing signing coins.

Digital signatures may also lead to privacy issues. Indeed, given a message and its sig-
nature, anyone can publish the pair which will confirm the authenticity of the message. In
certain applications, like in electronic passports (e-passports), publishing the authenticated
data leads to serious privacy issues. In this thesis, we define the required security properties
in order to protect the data privacy, especially in the case of e-passport verification. The
main idea consists for the e-passport to keep the signature secret. The e-passport should
only prove that it knows a valid signature instead of revealing it. We propose a new primi-
tive, called Offline Non-Transferable Authentication Protocol (ONTAP), as well as efficient
implementations that are compatible with the e-passport standard signature schemes.

Keywords: cryptography, message authentication protocol, short authenticated string,
SAS, key agreement protocol, digital signature, voice over IP, hash-and-sign paradigm, weak
hash function, offline non-transferable authentication protocol, ONTAP, electronic passport.

vi

Résumé

La motivation principale de ce travail est de concevoir des protocoles de sécurité restant
simples d’utilisation. Si l’application demande des tâches trop importantes, les utilisateurs
ne se comporteront pas correctement et cela engendrera des problèmes de sécurité. Un
exemple est le comportement actuel d’un utilisateur lorsqu’il établit une connexion SSH.
Il est sensé authentifier la clé publique qu’il reçoit. Cette opération nécessite l’obtention
d’une empreinte de la clé distante ce qui est, en général, trop imposant. Au final, 99% des
utilisateurs acceptent simplement la clé publique du serveur sans même la contrôler. La
conception d’un protocole plus simple d’utilisation n’est pas une chose facile étant donné
le niveau de sécurité escompté. Une chose intéressante est la coexistence des canaux de
communication non sécurisés avec des canaux qui permettent d’authentifier des données.
En pratique, ces derniers peuvent être une simple comparaison de deux châınes, la copie
d’un nombre d’un appareil à un autre, ou encore la diction par téléphone. Clairement, plus
la châıne à authentifier est courte, moins l’utilisateur aura de travail et plus le protocole
sera simple d’usage. Ceci nous amène à la notion de cryptographie basée sur les SAS (en
anglais, SAS-based cryptography). Le terme SAS provient de Short Authenticated String qui
signifie châıne authentifiée courte.

La première partie de cette thèse est consacrée à l’analyse des protocoles d’authentification
de messages basés sur les SAS. En particulier, nous analyserons leur sécurité de manière glo-
bale puis nous proposerons plusieurs protocoles optimaux. En utilisant ces protocoles, nous
montrerons comment construire des protocoles d’échanges de clés authentifiés également
basés sur les SAS. Ce type de protocoles permet à un groupe d’utilisateurs de se mettre
d’accord sur une clé secrète. L’avantage de la cryptographie basée sur les SAS est qu’elle
ne nécessite pas d’information préétablie, ni de faire confiance à une tierce personne, ni
d’infrastructure à clés publiques. Par contre, elle demande à l’utilisateur d’échanger de
manière authentifiée une courte châıne, par exemple un SAS de cinq chiffres. En utilisant
cette clé secrète, le groupe pourra communiquer de manière sécurisée en utilisant un algo-
rithme de chiffrement conventionnel.

Les protocoles d’authentification de messages basés sur les SAS sont souvent utilisés pour

vii

Sylvain Pasini

authentifier les messages d’un protocole d’échange de clé. Par conséquent, chaque nouvelle
communication nécessite l’intervention des utilisateurs pour échanger le SAS. Une solution
permettant de réduire la charge des utilisateurs est l’utilisation de signatures digitales. En ef-
fet, dans une phase d’initialisation, il est possible d’utiliser le protocole d’authentification de
messages pour échanger des clés publiques permanentes permettant la vérification de signa-
tures digitales. Après cela, les utilisateurs peuvent exécutés plusieurs protocoles d’échange
de clés et l’authentification sera faite grâce aux signatures digitales. Dans le cas où il n’y
aurait pas de canal authentifié disponible, mais une infrastructure à clés publiques, la phase
d’initialisation peut être évitée puisque les clés de vérification sont déjà authentifiées par
l’infrastructure.

La seconde partie de cette thèse est consacrée à deux problèmes liés aux signatures digi-
tales : (1) l’insécurité des signatures digitales qui utilisent des fonctions de hachage faibles
et (2) la violation de la sphère privée résultant de documents signés.

Les signatures digitales sont souvent prouvées sûres dans le modèle de l’oracle aléatoire.
Le rôle de l’oracle aléatoire est de modéliser des fonctions de hachage. Malheureusement,
les fonctions de hachage réelles dévient de plus en plus de cette idéalisation. En effet,
des faiblesses ont déjà été découvertes et ce ne sont certainement pas les dernières. La
réparation des signatures implémentées avec ces faibles fonctions de hachage est donc un
problème. Dans cette thèse, nous rechercherons un meilleur modèle pour les fonctions de
hachage. Après cela, nous proposerons un pré-traitement pour le message qui permettra
de transformer une implémentation de signature faible en une résistante. Il restera un
inconvénient: la longueur de la signature accrôıt dû à l’aléa ajouté dans le pré-traitement.
Nous proposerons également une méthode pour éviter cette allongement de signature en
recyclant l’aléa de l’algorithme de signature.

Les signatures digitales peuvent également engendrer des problèmes de sphère privée. En
effet, n’importe qui possédant un message ainsi que sa signature peut les publier, la signa-
ture confirme l’authenticité du message. Dans certains cas, comme pour les passeports
électroniques, la publication des données authentifiées (et personnelles) engendre de sérieux
problèmes de sphère privée. Dans cette thèse, nous définirons les propriétés nécessaires pour
protéger la sphère privée, spécialement pour le cas des passeports électroniques. L’idée prin-
cipale pour le passeport est de prouver qu’il possède la signature des données tout en la con-
servant secrète. Nous proposerons une nouvelle primitive nommée Offline Non-Transferable
Authentication Protocol (ONTAP). Nous proposerons également des implémentations ef-
ficaces qui sont compatibles avec les standards de signatures utilisés par les passeports
électroniques.

Mots clés : cryptographie, protocole d’authentification de messages, short authenticated
string, SAS, protocole d’échange de clés, voix sur IP, signature digitale, le paradigme hash-
and-sign, fonction de hachage faible, protocole d’authentification non transférable, ONTAP,
passeport électronique.

viii

Contents

Abstract/Résumé. iii

Acknowledgments/Remerciements xvii

1 Introduction . 1

1.1 SAS-Based Cryptography (Part I) 4

1.2 Signatures Schemes (Part II) 7

1.3 Keyboard Compromising Electromagnetic Emanations 8

2 The Authentication Problem 13

2.1 Basics in Cryptography 14

2.1.1 Symmetric Cryptography 14

2.1.2 Agreeing on a Secret Key without Confidential Channel 16

2.1.3 Public-Key Cryptography 17

2.2 Communication Channels 21

2.3 Towards Usable Solutions to Setup Secure Communications 23

2.4 Message Authentication 25

2.5 Other Ways for Message Authentication 26

2.5.1 Protocols Using Time Bounding. 26

2.5.2 Protocols Using Distance Bounding 29

2.6 Setting up a Secure Communication in a Nutshell 31

ix

Sylvain Pasini

3 Preliminaries . 33

3.1 Notations . 33

3.2 Hash functions . 34

3.2.1 Collision Resistant Hash Functions. 34

3.2.2 Weakly Collision Resistant Hash Functions. 35

3.2.3 Keyed and Multi-Keyed Hash Functions 35

3.2.4 Target Collision Resistant Hash Functions 38

3.2.5 Enhanced Target Collision Resistant Hash Function 38

3.3 Random Oracle Model . 39

3.3.1 Random Oracle. 39

3.3.2 Pseudo-random Generator 40

3.4 Common Reference String Model 41

3.5 Commitment Schemes . 41

3.5.1 (Tag-less) Commitment Model 41

3.5.2 Tag-based Commitment Model 42

3.5.3 Completeness, Hiding, and Binding Properties 43

3.5.4 Non-Malleability . 46

3.5.5 Ideal Commitment Model 48

3.5.6 Trapdoor Extractable Commitment Schemes 49

3.5.7 Trapdoor Equivocable Commitment Schemes 49

3.5.8 Trapdoor Commitment Model 50

3.5.9 Examples . 51

3.6 Entropies . 56

3.7 Collisions on the Outputs of a Random Oracle 56

x

I SAS-based Message Authentication and Key Agreement Protocols

59

I.4 Security Model . 61

4.1 Network Model . 61

4.2 Communication Model . 62

4.3 Adversarial Model . 64

4.4 Authenticated Channel Models 66

4.4.1 Weak Authenticated Channels 67

4.4.2 Stronger Authenticated Channels 67

4.4.3 Examples . 68

4.4.4 SAS-based Cryptography 69

I.5 On the Optimal Entropy of Authenticated Communication 71

5.1 Probability of Collision Between Random Variables 72

5.2 A Generic One-Shot Attack 77

5.3 A Generic Multi-Shot Attack 79

5.4 A Generic Multi-Shot Attack Against Non-Interactive Protocols . . . 81

5.5 A Short Overview on Generic Attacks Against Unilateral Protocols . . 82

5.6 Extension to Two-Party Bilateral Protocols 84

5.7 Optimality of a Protocol 84

5.8 Unconditional Security . 85

I.6 Stand-Alone Security versus Complex Settings Security 87

6.1 Stand-Alone Security . 87

6.2 Security in Complex Settings 93

6.2.1 Reminder on Universal Composability 94

6.2.2 Composability Guarantees of a SAS-based Message Authentication Protocol
95

6.3 SAS-based Protocol Security in a Nutshell 99

xi

Sylvain Pasini

I.7 Two-Party Unilateral Message Authentication 101

7.1 Unilateral Message Authentication Primitive 102

7.2 Prior Work on Non-Interactive Protocols 102

7.2.1 A CRHF-based NIMAP. 102

7.2.2 A NIMAP with Strong Authentication: MANA 103

7.3 An Optimal NIMAP: PV-NIMAP 105

7.4 Following Works . 110

7.5 On Interactive Protocols 112

7.6 Applications . 114

I.8 Two-party Bilateral Message Authentication 121

8.1 Bilateral Message Authentication Primitives 121

8.1.1 Message Mutual-Authentication 122

8.1.2 Message Cross-Authentication 122

8.1.3 MCA versus MMA Protocols 123

8.2 Prior Work . 123

8.2.1 A Trivial MMA. 123

8.2.2 The Original SAS-based MCA Protocol: Vau-SAS-MCA 124

8.3 An Optimal MMA Protocol: PV-SAS-MMA 125

8.4 An Optimal MCA Protocol: PV-SAS-MCA 129

8.5 Following Works . 135

8.6 Applications . 136

I.9 Group Message Authentication 137

9.1 Group Message Authentication Primitive 137

9.2 Prior Work . 138

9.2.1 Group-MANA IV . 139

9.3 An Optimal GMA Protocol: LP-SAS-GMA 139

9.4 Applications . 148

xii

I.10 From Message Authentication to Key Agreement 149

10.1 Authenticated Key Agreement Primitive. 150

10.2 (Non-Authenticated) Key Agreement 151

10.2.1 The Diffie-Hellman Key Agreement Protocol 151

10.2.2 The Burmester-Desmedt Group Key Agreement Protocol 151

10.3 Prior Authenticated Key Agreements 152

10.3.1 The Hoepman AKA Protocol. 153

10.3.2 PGPfone . 154

10.4 KA+MA = AKA . 154

10.5 An Optimal AKA Protocol: PV-SAS-AKA. 157

10.6 An Optimal GKA Protocol: LP-SAS-GKA 158

10.7 Applications . 159

xiii

Sylvain Pasini

II Signatures Schemes 163

II.11 Definitions of Digital Signatures and Interactive Proofs 165

11.1 Overview of Digital Signatures 165

11.2 Digital Signature Schemes Formally 168

11.2.1 FML-DS versus AML-DS 169

11.2.2 Adversarial Model. 169

11.3 Interactive Proofs (in the Standard Model). 171

11.3.1 Binary Relation and Binary Language 171

11.3.2 Interactive Turing Machines 172

11.3.3 Interactive Proof Systems 172

11.3.4 Proof of Knowledge 173

11.3.5 Zero-Knowledge . 174

11.4 Interactive Proofs in the Common Reference String Model 175

11.5 Deniability in Zero-Knowledge Proofs 176

II.12 Preserving the Privacy of Signed Documents 179

12.1 Related Work . 181

12.2 On Non-Transferability 182

12.3 Offline Non-Transferable Authentication Protocol (ONTAP) 183

12.4 Deniable ZK from Σ-Protocols. 187

12.4.1 Σ-Protocols . 187

12.4.2 Weak Σ-Protocols . 189

12.4.3 Generic Transform of Σ-Protocols 191

12.5 ONTAP Constructions in Practice 199

12.5.1 ONTAP with a Generic RSA Signature 199

12.5.2 ONTAP with a Generic ElGamal Signature 200

12.6 Comparison with Other Works 204

xiv

12.7 Application to Electronic Passports. 205

12.7.1 Passive versus Active Authentication 206

12.7.2 Optional Basic and Extended Access Controls 207

12.7.3 E-Passport Passive Authentication Issue. 209

12.7.4 Deniable Zero-Knowledge in Signature Verification 209

II.13 Building Secure Schemes based on Weak Hash Functions. 211

13.1 Hash-and-Sign variants Today 212

13.1.1 Adding Unpredictability 213

13.1.2 Domain Extension. 215

13.1.3 Both at the Same Time 216

13.1.4 Randomized Hash-and-Sign Paradigm 217

13.1.5 Improved Randomized Hash-and-Sign Paradigm 220

13.1.6 Analysis of the Above Existing Solutions 221

13.2 Modeling (Weak) Hash Functions 222

13.2.1 Weak Random Oracle Hashing 222

13.3 Strong Signature Schemes with Weak Hashing 223

13.4 The Entropy Recycling Technique 228

13.5 Applications . 232

13.5.1 A Concrete Example with DSA 233

xv

Sylvain Pasini

14 Conclusion . 235

14.1 SAS-based Cryptography 236

14.2 Preserving the Privacy of Signed Documents 240

14.3 Strengthening Signature Schemes Based on the Hash-and-Sign Paradigm 240

14.4 Final Notes and Further Work. 241

A Birthday Paradox. 243

Bibliography . 245

Glossary . 265

List of Figures . 269

List of Definitions . 275

List of Theorems . 279

Curriculum Vitæ . 283

xvi

Acknowledgments

My attraction for security, particularly for cryptography, was developed during my studies.
To understand how I got here today, it is necessary to quickly overview my route: At the end
of the normal school, I was directly admitted at the Engineering School of Geneva (EIG). I
had the chance to explore different areas of interest, such as computer science, engineering
or physics, and I found that all seemed “logical” for me. The most mysterious part remained
the cluster of electronic components in a device. Indeed, when we open one, we immediately
think “how is it possible to understand what is happening there?”. An engineer is not only
able to understand, but more, he is able to design it. So, when I entered in the HES cycle, I
chose the electronic field. At the end of the EIG, I did my diploma work in image processing
with Prof. Michel Kocher. Michel changed my academic career by convincing me to continue
my studies at the EPFL. During my studies at the EIG, I learned a lot about the functioning
of a computer, in both hardware and software levels. The remaining mysterious point for
me was the functioning of the Internet: how the Web works, how an email finds its way,
and so on. So, at the EPFL, I chose to study communication systems. I discovered that the
area was not so complicated and only one question remained: “how to ensure security?”.
Through the courses Network security, given by Dr. Philippe Oechslin, and Cryptography,
given by Prof. Serge Vaudenay, I discovered a fascinating field. During my semester project
and my master thesis, my interest for the field of security increased and I decided to pursue
my career as teaching and research assistant in the security and cryptography laboratory
while doing my PhD thesis under the supervision of Prof. Serge Vaudenay.

Here, I would like to express here my gratitude to those who have marked my career, and
those who supported me during these years.

xvii

Sylvain Pasini

I start with my PhD supervisor, Professor Serge Vaudenay, who offered me the chance to
carry out my PhD thesis in the Security and Cryptography laboratory (LASEC). Everything
started in March 2004 with the first course “Security and Cryptography”. I would like to
thank Serge for having introduced me to the fascinating field of cryptography. Cryptogra-
phy is a mysterious world and I always appreciated how math and computer tools can be
combined to build (or break) real systems. A cryptographer has a special way of thinking:
every time, everywhere, he tries to find “holes in every wall”. One example is the famous
“replay attack” in a all you can eat restaurant. Indeed, it is possible to feed the entire
table by paying only once, the first plate is used as a kind of ticket. Serge offered me the
opportunity to discover the world of research. Thanks to his experience, his vivacity, his
vast knowledge, his rigor, and his assistance, I was able to learn a huge amount of things,
in cryptography of course, but also in other areas. Thank you Serge!

I thank Prof. Boi Faltings, the president of the jury, as well as Prof. Arjen Lenstra, Prof.
Kaisa Nyberg, and Dr. David Pointcheval for having accepted to take time for reviewing
this work. I also express my thanks to the the Swiss National Science Foundation (SNSF)
which supported this research project (grant 200021-113329).

During these years, I had the chance to meet and to work with many colleagues. A PhD
thesis is time limited. There was a kind of rotation among the PhD students in the lab:
when a PhD student arrives, he is the newest, and as time goes, the old ones leave and the
new ones take their place. In our laboratory, the LASEC, there was always a positive and
dynamic atmosphere that was suitable for work, but also for fun. I want to thank all my
former colleagues for their welcome and all the moments we have shared together, in order of
arrival: Serge Vaudenay, Martine Corval, Pascal Junod, Philippe Oechslin, Gildas Avoine, Yi
Lu, Jean Monnerat, Thomas Baignères, Claude Barral, Julien Brouchier, Matthieu Finiasz,
and Martin Vuagnoux. I also thank all my colleagues who came after I did with whom I have
shared great moments, in order of arrival: Raphael Phan, Khaled Ouafi, Raphaël Overbeck,
Rafik Chaabouni, Jorge Nakahara Jr., Pouyan Sepehrdad, and Atefeh Mashatan. I believe
that many of them deserve special thanks, in alphabetical order:

As in all reference sections, Gildas Avoine is the first one. I remember very good moments
spent with my big friend “Gigi”. I also remember our trip to New York filled with many
anecdotes. I thank him for his friendship and for all his advice, especially when I arrived
and I had difficulties with LATEX. Between motorcyclists, the current is always on...

The next person who deserves special thanks is Thomas Baignères. Thomas became also
one of my very good friends. Thomas was my supervisor during my semester project, he
learned me the basics, and advised me to carry out my master thesis as well as my PhD
thesis at the LASEC. Without him, I would not be part of the crypto world today. Thanks
Thomas!

I also thank Rafik Chaabouni who recently arrived at the lab, for trying to make everyday

xviii

of our life more joyful. I think about the jokes he made for the April fool’s day or birthdays,
and also the ones he makes to people forgetting to lock their machines, and so on.

Our secretary Matine Corval deserves of course to be thanked. She was always friendly and
smiling and it was a pleasure to share these years with her. She was like the “academic
mother” of the lab. Her assistance was essential for all of us, especially for administrative
tasks (to which I really don’t understand anything).

I would especially like to thank Matthieu Finiasz for all his help. Thanks to his very good
availability, his friendliness, his patience, and his knowledge, I had many opportunities to
exchange ideas and to expose problems with him and I often came out of his office with a
solution. I get along very well with him and we built a strong friendship.

Jean Monnerat, always of good mood and ready to defend Switzerland and his native canton
(the beautiful Jura), gave openings to many animated debates. I thank him for his help,
especially in mathematics and LATEX. Jean also became for me a very good friend and I
keep very good memories of moments spent with him.

I would thank Philippe Oechslin with whom I shared my office for over two years. It was an
honor for me to share my office with Philippe. Philippe is also the person who introduced
me to the world of security through its exciting course “network security”. His course
encouraged me to follow “Security and Cryptography” mentioned above.

The last person of the lab who deserves my special thanks is Martin Vuagnoux. I would like
to thank him for being an excellent co-author, for being a very pleasant office-mate, and for
the funny stories which made us laugh so much especially at the coffee breaks. Martin also
became a very good friend and I guess that both of us will never forget the Vietnam story
(it’s a long story but Martin will understand). Thanks for all “Martino”!

I finally would like to thank a few virtual persons from the LASEC and theirs authors
would certainly recognize them, in alphabetical order: Diablotin, ElGringo, Kevin Mitnick,
kpts44, and Mojean is back.

I would like to thank France Faille, the secretary of the neighbor laboratory. During the
years, we had the chance to get to know each other better and I would say that France is
one of the most kindly and the most friendly person that I know. I especially thank her for
her good mood and her support, but also for its assistance during various administrative
matters.

I would like to thank Sven Laur, also known as Swen, with whom I wrote two papers.
He was a very pleasant and very competent co-author. By coincidence we share the same
hobby: model airplanes.

Dr. Michel Kocher, my supervisor during my first diploma at the Engineering School of
Geneva, who motivated, and encouraged me also deserves my thanks. I would like to thank

xix

Sylvain Pasini

him for his collaboration during my months of diploma work and for advising me to continue
my studies at the EPFL. Without him, I would never have known the EPFL.

I thank those who helped me to improve the readability of this thesis, namely: Martine
Corval, France Faille, Atefeh Mashatan, Jorge Nakahara Jr., Serge Vaudenay and Martin
Vuagnoux. Special thanks to Jorge who did a great job.

My parents should obviously not be forgotten. Thanks to them, I had the chance (amongst
many other things!) to get an excellent education and I greatly thank them. I also would
like to thank my wife, Nadia. No matter when and why, she always kept encouraging me
and took it upon herself to leave me enough spare time to conclude this thesis (even if it
sometimes required a few negotiations!). My final thanks go to my son, Matteo. I share
moments of intense happiness with him and this gives me everyday a huge motivation. I
finally thank all four of them for their Love which is essential for me to live.

Thanks to everyone!

Sylvain

After this pleasant period spent within the LASEC, I started a new adventure: working as cryp-

tographer at Nagravision (a Kudelski group company). I thank all my new collegues for their warm

welcome, especially Olivier Brique, Nicolas Fischer, Pascal Junod, Alexander Karlov, and Karl Osen.

xx

Remerciements

Mon attirance pour la sécurité informatique, et plus particulièrement pour la cryptographie
s’est développée au fil de mes études. Afin de comprendre comment je me suis retrouvé
ici aujourd’hui, il est nécessaire de survoler rapidement mon parcours : À la fin de ma
scolarité obligatoire, j’ai directement débuté des études à l’Ecole d’Ingénieurs de Genève
(EIG). Au début, nous avons la chance de pouvoir explorer différents domaines intéressants,
comme l’informatique, la mécanique, ou encore la physique. J’ai pu constater que tous
me semblaient “logiques”. La partie la plus mystérieuse pour moi restait l’amas de com-
posants électroniques contenu dans un appareil. En effet, lorsqu’on en ouvre un, on pense
immédiatement “comment est-ce possible de comprendre ce qui se passe là-dedans ?”. Un
ingénieur est non seulement capable de le comprendre, mais plus encore, il est capable
de l’inventer. Lors de mon entrée dans le cycle HES, j’ai donc choisi l’électronique afin
d’éclaircir ce domaine obscur. À la fin de mon cycle, j’ai réalisé mon travail de diplôme en
traitement d’images avec le Prof. Michel Kocher. Michel a en quelque sorte bouleversé mon
parcours académique en me poussant à poursuivre mes études à l’EPFL. La réussite des
examens d’admission de l’EPFL m’a permis d’entrer en 3ème année ainsi que de changer de
section. Lors de mes années passées à l’EIG, j’ai pu apprendre beaucoup sur le fonction-
nement d’un ordinateur, autant au niveau matériel qu’au niveau logiciel. Le point restant
mystérieux pour moi était le fonctionnement d’Internet : comment le Web fonctionne, com-
ment un email trouve son chemin, etc. A l’EPFL, j’ai donc choisi d’étudier les systèmes
de communication. J’ai découvert que le domaine n’était pas aussi compliqué qu’il en avait
l’air à l’origine. Seule une interrogation persistait : “comment garantir la sécurité ?”. Grâce
au cours de sécurité des réseaux, donné par le Dr. Philippe Oechslin, puis au cours de cryp-
tographie, donné par le Prof. Serge Vaudenay, j’ai découvert un domaine fascinant. Lors
de mon projet de semestre et de mon travail de master, mon intérêt pour le domaine de la
sécurité s’est accentué encore et j’ai décidé de poursuivre ma carrière académique en tant
qu’assistant-doctorant dans le laboratoire de sécurité et de cryptographie (LASEC) du Prof.
Serge Vaudenay.

Je tiens ici à exprimer ma reconnaissance aux personnes qui ont marquées mon parcours,
ainsi qu’à celles qui mon soutenues pendant ces années.

xxi

Sylvain Pasini

Pour commencer, je tiens à exprimer ma gratitude à mon superviseur de thèse, le Pro-
fesseur Serge Vaudenay, qui m’a donnée la chance de réaliser ma thèse dans le laboratoire de
Sécurité et Cryptographie (LASEC). Mon premier contact avec Serge a eu lieu en mars 2004
durant le cours “Sécurité et Cryptographie”. Je voudrais d’abord le remercier de m’avoir
fait découvrir ce domaine fascinant qu’est la cryptographie. La cryptographie est un monde
mystérieux et j’ai toujours apprécié la façon dont les outils mathématiques et informatiques
peuvent être associés afin de construire (ou de casser) des systèmes réels. Un cryptographe
a une façon bien à lui de penser : toujours et partout, il essaiera de trouver “un trou dans
chaque mur”. Un exemple est la célèbre “attaque par rejeu” dans un restaurant permettant
de manger à volonté. En effet, il est possible de nourrir l’ensemble de la table en payant
qu’une seule fois, l’assiette servant en quelque sorte de ticket. Serge m’a offert l’opportunité
de découvrir le monde de la recherche. Grâce à son expérience, sa vivacité, ses connaissances,
sa rigueur et son aide, j’ai pu apprendre énormément de choses, en cryptographie bien sur,
mais aussi dans divers autres domaines. Merci Serge !

Je remercie le Prof. Boi Faltings, président du jury, ainsi que le Prof. Arjen Lenstra, la
Prof. Kaisa Nyberg et le Dr. David Pointcheval d’avoir accepté de consacrer une partie de
leur temps pour relire ce travail. Je remercie également le Fond national suisse (FNS) de la
recherche scientifique qui a soutenu financièrement ce projet (subvention 200021-113329).

Durant ces années passées au LASEC, j’ai eu la chance de rencontrer et de travailler avec
beaucoup de collègues. Les thèses ayant une durée limitée, il y a eu une sorte de tournus
parmi les doctorants. Lorsqu’un thésard arrive, il est le nouveau, et au long des années, les
anciens partent pour laisser la place aux nouveaux. Dans notre laboratoire, il y a toujours
régné une ambiance et une dynamique qui étaient propices au travail, mais aussi à la détente.
Je tiens à remercier tous mes anciens collègues pour leur accueil ainsi que pour tous les
moments que nous avons partagés ensembles, par ordre d’arrivée : Serge Vaudenay, Martine
Corval, Pascal Junod, Philippe Oechslin, Gildas Avoine, Yi Lu, Jean Monnerat, Thomas
Baignères, Claude Barral, Julien Brouchier, Matthieu Finiasz, and Martin Vuagnoux. Je
remercie également tous mes collègues arrivés après moi avec qui j’ai également partagés
d’excellents moments, par ordre d’arrivée : Raphael Phan, Khaled Ouafi, Raphaël Overbeck,
Rafik Chaabouni, Jorge Nakahara Jr., Pouyan Sepehrdad, and Atefeh Mashatan. Je pense
que certains méritent des remerciements particuliers, par ordre alphabétique :

Comme dans tous ses papiers, Gildas Avoine est le premier. Je me souviens de beaucoup
de bons moment avec mon ami “Gigi”, en particulier notre séjour à New York remplit
d’anecdotes. Je le remercie pour son amitié et pour ses conseils, spécialement lorsque je suis
arrivé et que je n’étais pas encore très familier avec LATEX. Après tout, le courant passe
toujours entre motards...

Thomas Baignères mérite également quelques remerciements. Thomas, ou Tomtom pour les
intimes, m’a supervisé pendant mon projet de semestre, il m’a en quelque sorte appris les
bases. Il m’a ensuite conseillé de faire mon travail de master, puis, plus tard, ma thèse au

xxii

LASEC. Sans lui, je ne ferais pas partie aujourd’hui du monde de la crypto. Merci Thomas !

J’aimerais aussi remercier Rafik Chaabouni, récemment arrivé dans le labo. Rafik essayait
chaque jour de rendre notre vie plus joyeuse. Je pense en particulier à ses farces lors du
premier avril ou lors d’anniversaires, à ses farces adressées aux personnes qui par mégarde
auraient oublié de verrouiller leur machine, et j’en passe.

Bien évidemment, je ne peux oublier de remercier Martine Corval, notre secrétaire. Martine
a toujours été aimable et souriante et ça a été pour moi un plaisir de partager ces années
avec elle. On pourrait dire qu’elle a été la “maman académique” du laboratoire, nous
encourageant ou nous remontant le moral lorsque nous en avions besoin. Son aide a été
essentielle pour nous tous, en particulier pour les tâches administratives (pour lesquelles je
suis vraiment perdu).

J’aimerais remercier très spécialement Matthieu Finiasz. Grâce à sa disponibilité, son ama-
bilité, sa patience, et ses compétences, j’ai eu beaucoup d’opportunités pour apprendre, pour
exposer mes problèmes, pour échanger des idées, et très souvent je ressortais de son bureau
avec une solution. Je garde également de bons souvenirs lors de nos séjours à Barcelone et
à Paris. En dehors de la vie académique, Matthieu et moi avons construit une Amitié qui à
mes yeux est l’une des plus importantes.

Jean Monnerat, toujours de bonne humeur, était toujours prêt à défendre sa nation, la
Suisse, ou son canton, le magnifique Jura, ce qui a occasionné de nombreux débats animés.
Je remercie Jean pour son aide, particulièrement en mathématiques et en LATEX. Jean est
également devenu pour moi un grand Ami et je garde de très bons souvenirs de moments
passés avec lui.

J’aimerais remercier Philippe Oechslin qui a été mon collègue de bureau pendant plus de
deux ans. C’était pour moi un honneur de partager un bureau avec lui. Philippe est
également la personne qui m’a fait découvrir le monde de la sécurité informatique au travers
de son cours “sécurité des réseaux”. Son cours était tellement passionnant qu’il m’a beau-
coup encouragé à suivre le cours “Sécurité et Cryptographie” du Prof. Serge Vaudenay
comme expliqué plus haut. Merci Philippe pour ton cours si passionnant !

La dernière personne du laboratoire que je souhaite remercier ici est Martin Vuagnoux.
Je le remercie pour avoir été un excellent co-author, d’avoir été un agréable collègue de
bureau, et de nous avoir raconté autant d’histoires marrantes qui nous ont fait tant rigoler,
surtout aux pauses cafés. Martin est aussi devenu un très bon Ami et je parie qu’aucun de
nous deux oubliera la fameuse histoire du Vietnam (c’est une longue histoire, mais Martin
comprendra). Merci pour tout “Martino” !

Je remercie égalements quelques personnages virtuels pour les bons moments partagés en-
sembles. Leurs auteurs les reconnâıtront très certainement, par ordre alphabétique : Dia-
blotin, ElGringo, Kevin Mitnick, kpts44, and Mojean is back.

xxiii

Sylvain Pasini

J’aimerais remercier France Faille, la secrétaire du laboratoire avec qui nous partagions
l’étage. Au long de ces années, nous avons eu la chance de faire plus ample connaissance
et je dirais que France est l’une de personne les plus amicales et les plus serviables que je
connaisse. Je la remercie spécialement pour les agréables moments que nous avons partagés,
pour son soutien ainsi que pour son aide lors de diverses tâches administratives.

Je voudrais remercier Sven Laur, ou plutôt Swen, avec qui j’ai écris plusieurs articles.
Il a été un agréable co-auteur et nous avons pu échanger beaucoup d’idées. De plus, par
cöıncidence, nous partageons la même passion: l’aéromodélisme !

Dr. Michel Kocher, mon superviseur durant mon travail de diplôme à l’Ecole d’Ingénieurs
de Genève, mérite un grand Merci. Il m’a encouragé et motivé à poursuivre mes étude à
l’EPFL. Sans lui, je n’aurais jamais connu l’EPFL...

Je remercie également les personnes qui m’ont aidées à améliorer la rédaction de cette
thèse, soit : Martine Corval, France Faille, Atefeh Mashatan, Jorge Nakahara Jr., Serge
Vaudenay ainsi que Martin Vuagnoux. Un merci tout particulier à Jorge qui a fait un
travail formidable.

Mes parents ne doivent évidemment pas être oubliés. Grâce à eux, j’ai eu la chance
(parmi bien d’autres choses!) de pouvoir réaliser une excellente formation et je les remercie
énormément. Je tiens également à remercier mon épouse, Nadia. Peu importe quand et
pourquoi, elle m’a toujours encouragé et a pris sur elle afin de me laisser assez de temps
libre pour conclure cette thèse (même si parfois cela a demandé quelques négociations).
Mes derniers remerciements vont à mon fils, Matteo. Je partage des moments de bonheur
intense avec lui et cela me donne chaque jours une grande motivation. Je tiens finalement à
les remercier tous les quatre pour leur Amour qui est essentiel pour moi.

Merci à tous !

Sylvain

Après cette agréable période passée au sein du LASEC, j’ai débuté une nouvelle aventure: travailler

comme cryptographe chez Nagravision (une compagnie du Groupe Kudelski). J’en profite pour re-

mercier mes nouveaux collègues pour leur accueil chaleureux, en particulier Olivier Brique, Nicolas

Fischer, Pascal Junod, Alexander Karlov et Karl Osen.

xxiv

Chapter

ONE

Introduction

One of the most important goals in cryptography is to establish a secure communication
channel between two or more parties. Parties may be human beings involved in confidential
voice over IP calls, mobile phones exchanging sensitive data, a user connecting to a bank
web site, or a border patrol checking an electronic passport (e-passport). Parties are usually
connected through insecure channels, for instance, a wireless link, or the Internet. Thus, the
“raw data” are clearly insecure. The goal of a cryptographer is to design a system which
establishes this secure communication over any insecure channel. The term secure means
that the communication should be confidential, i.e., nobody except the parties involved have
access to the information. The communication should also ensure authenticity and integrity,
i.e., the recipient is ensured that the information was sent as-is and is ensured about who
sent it.

Fortunately, symmetric cryptography, also known as conventional or secret-key cryptog-
raphy, exists. It enables to establish a secure communication in cases where a secret key
is shared between the parties. Let all parties involved in a secure communication know a
shared key sk. Any secure cipher with sk will ensure a secure communication. An essential
condition is to keep sk secret, i.e., nobody except the involved parties know sk. Therefore,
to establish a secure channel, it is enough for the parties to exchange (or to agree) on a
shared secret key.

In short, setting up a secure communication over an insecure channel can be summarized
by two sub-goals as depicted on Figure 1.1. Firstly, a key should be exchanged (or agreed)

1

Sylvain Pasini

between all parties in a secret way. This first phase is often called key agreement. Sec-
ondly, in order to keep the key secret, the parties involved in the key agreement should be
authenticated (otherwise, the key could be leaked to an adversary and becomes no longer
secret).

Goal:

Setup a secure communication

Authenticate Parties ?

Agree on
a Shared Secret Key ?

Figure 1.1. Setting up a Secure Communication Split in Two Goals.

With no assumption, parties must exchange a secret key. To achieve that goal, they need
to use a secure extra channel that ensures confidentiality, authenticity, and integrity at least
once before setting up the communication. Such a channel is very expensive in practice
because participants must be physically close while the key is exchanged. Indeed, suppose
two parties located far away, say Alice in Athens and Bob in Buenos Aires, wanting to setup a
secure call. At that time, they do not share any secret and the only way to exchange a secret
key is to encounter. Phone, mail, and email, all are not secure. The key establishment is
clearly impossible in that case (or at least expensive or slow). Therefore, the authentication
of parties, as well as the key agreement, are impossible since everything is insecure. To
achieve our goal, we must make some additional assumptions. Different assumptions lead
to different models and they may be incomparable due to their very different settings. As
depicted in Figure 1.2, we will briefly present models considering a pre-shared key, a public-
key infrastructure, and an extra authenticated channel.

Goal:

Setup a secure communication

Password-based
Key Agreement

(a)

Authenticated
Channel

Public-Key
Infrastructure

Pre-Shared
Key

Key Agreement
(signed messages)

(b)

SAS-based
Key Agreement

(c)

Others?

...

Figure 1.2. Setting up a Secure Communication According to the Assumptions.

One can assume that all parties involved in the protocol already share a secret key, often
called a password. This is illustrated as case (a) in Figure 1.2. Passwords are often of low
entropy since human beings should remember them. Using a password directly to encrypt

2

Chapter 1 - Introduction

the communication is not a good idea. Indeed, the low entropy allows brute force attacks
and the password will eventually leak. The password is used to run a key agreement in
order to get a session key between involved parties. One drawback with this setting is
the password assumption. It means that at some time in the past, all parties exchanged
a password secretly. The only gain compared to the previous solution is that the secure
channel is used to exchange a smaller amount of data, e.g., a low entropy password instead
of a high entropy key.

The cryptographic world was revolutionized in 1976 with the discovery of public-key cryp-
tography. Indeed, Diffie and Hellman [DH76] proposed a secure way to establish a key
between two parties under the standard complexity-theoretic assumptions. However, the
Diffie-Hellman protocol is insecure against man-in-the-middle attacks. Their key establish-
ment protocol requires authenticated links (the confidential assumption is relaxed). We
emphasize that transcripts of common key agreement protocols are usually several thou-
sands bits long and, thus, message authentication is a non-trivial task. Of course, we can
use message authentication codes but this requires a shared secret key that we are only try-
ing to establish. Alternatively, we can use digital signatures, but they also require authentic
transfer of public keys. Finally, the authentication of the protocol transcript may be done
by using an extra authenticated channel. Another example to establish a secret key is the
use of any secure public-key cryptosystem such as RSA [RSA78] or ElGamal [ElG85]. For
the encryption, anyone knowing the public key can encrypt a plaintext, but only the owner
of the corresponding private key will be able to decrypt it. In this case, we must insure
that the public key is transferred to the participants in an authenticated way. In a nutshell,
the use of public-key primitives can relax the confidential assumption on the extra channel
and, thus, setting up a secure communication can be reduced to the problem of message
authentication. Indeed, thanks to message authentication, parties are able to establish a
shared secret key while its confidentiality, its authenticity, and its integrity is ensured among
all parties.

Claim 1.1.
As long as parties are able to authenticate data, they can establish a shared secret key. As
a consequence, they can also protect communication over insecure channels.

A first solution to authenticate messages is to assume the existence of a public-key in-
frastructure. This is illustrated as case (b) in Figure 1.2. Indeed, once a public key is
authenticated, it is possible to authenticate the signed messages by checking signatures. An
infrastructure is composed of certification authorities. Each authority posses a key pair: a
private key and a public key. The authority outputs certificates for public keys ensuring
that a given public key is bound to a given identity (as well as validity date and others). An
end-user knowing the authority’s public key is able to check the validity of any certificate
produced by that authority. Usually, the public key of many authorities are setup before,
typically they are embedded in web browsers. Thanks to the public key authentication, the
end-user can use it to verify message signatures (i.e., message authentication) or to encrypt

3

Sylvain Pasini

information that only the recipient will be able to decrypt. This solution requires a huge
infrastructure which is expensive and forces the end-user to trust the certificate authorities
(who can certify wrong public keys) and to trust the ring of public keys (typically the web
browser).

Another solution to authenticate messages is to use a message authentication protocol
relying on an extra authenticated channel (case (c) in Figure 1.2). Hence, many practical
communication protocols such as SSH, PGP, Bluetooth, and WUSB use extra channels which
achieve at least authentication. Indeed, in SSH and PGP, the public keys are authenticated
with the help of the user who will check the fingerprints. When a user receives a PGP public
key, he or she computes its fingerprint and then calls the claimed owner of the public key. If
both fingerprints match, then the public key is authenticated, otherwise, the key has been
altered.

This thesis is organized as follows. It begins with Chapter 2 by giving a big picture on the
cryptographic techniques. Chapter 3 is devoted to give standard cryptographic definitions
such as hash functions, random oracle, common reference string model, and commitment
schemes. Part I (Chapters 4-10) and Part II (Chapters 11-13) respectively focus on
message authentication protocols which use an extra authenticated channel and on signature
schemes. More details on each part are given below. Finally, this thesis concludes with
Chapter 14.

1.1 SAS-Based Cryptography (Part I)

In this part, we assume that parties can exchange information through an extra authenti-
cated channel in addition to the insecure channel. Normally, the authenticated channel is
established by a human operator. For instance, a user can establish it by doing relatively
simple tasks, such as copying a string from one device to another or spelling a string on
the phone. Indeed, such tasks create authenticated channels in practice, since no adversary
controlling the network can forge these (out-of-band) messages. On the other hand, these
protocols require the help of the user and, thus, they should request only small tasks in
order to stay user-friendly. As a consequence, protocol designers should use the minimum
amount of out-of-band data as possible to achieve the desired security level.

As explained above, two-party (authenticated) key agreement protocols may be built by
using the Diffie-Hellman [DH76] key agreement. However, the messages should be authen-
ticated to avoid man-in-the-middle attacks. For that reason, the whole protocol transcript
is authenticated. Since the protocol transcript is typically of several thousands bits, the
transcript itself cannot be sent over the authenticated channel. A message authentication
protocol sends the message over the insecure channel and then uses an authenticated string
as short as possible in order to validate the authenticity of the received messages. The same
idea may be used to build key agreement for groups by using a group key agreement instead

4

Chapter 1 - Introduction

of the Diffie-Hellman protocol.

Rivest and Shamir [RS84] were the first to propose human participation in an authen-
tication protocol. The parties should be able to recognize their respective voices. Since
then, the model has evolved. We assume that parties can communicate over two different
types of channels. First, parties can communicate over an insecure channel. This chan-
nel has a high-bandwidth and is cheap. However, the adversary has full control on that
channel. Indeed, we assume that he can eavesdrop, drop, modify, insert, forge, delay, and
replay any messages. Second, the parties can communicate over an authenticated channel.
This channel achieves authenticity and, thus, ensures the recipient of a message about who
sent it. Integrity is implicitly provided. It has a low-bandwidth and is expensive. As a
result, communication on that channel should be as light as possible. Remember that more
communication leads to more user participation. The adversary can still eavesdrop, drop,
delay, and replay any messages, but he cannot modify, insert, or forge them. This model
was formally introduced by Vaudenay [Vau05b] and called SAS-based cryptography where
SAS stands for Short Authenticated Strings. However, it is also known on different names,
see Figure 1.3.

Manual channel in [GMN04, GN04, LN06a, LN06b, NSS06, RWSN07],

SAS-based cryptography, where SAS stands for Short Authenticated String,
in [Vau05b, Pas05, PV06a, PV06b, LP08] and in this thesis,

Two-channel cryptography in [MS07, MS08, Mas08],

User-aided cryptography in [PV05, LP09].

Figure 1.3. The Different Designations of SAS-based Cryptography.

There are many applications of key agreement protocols and it is hard to enumerate
them. For instance, SAS-based key agreement may be used to pair two Bluetooth devices, to
securely print on a selected printer, to quickly setup keys in case of disaster or compromised
infrastructure, to establish a secure Voice over IP call, etc. Note that it is becoming usual
to add security in Voice over IP.

Balfanz et al. [BSSW02] were the first to formalize the fingerprint-based protocol. How-
ever, first non-trivial results were obtained by Gehrmann, Mitchell, and Nyberg [GMN04,
GN04]. They showed how to construct SAS-based message authentication protocols that
preserve reasonable security levels even for short authenticated messages consisting of 4–
6 decimal digits. The latter made SAS-based data authentication practical for securing
short-range wireless communication such as Bluetooth and wi-fi networks. The original SAS
protocol proposed by Vaudenay [Vau05b] was the second important discovery. This protocol
was the first to achieve an optimal security level with respect to the SAS length. Vaudenay

5

Sylvain Pasini

also introduced the concept of SAS-based cryptography to a wider cryptographic audience.

In Part I, we start with the formal security model in Chapter 4. In particular, we define
the network, the devices, the channels, and the adversarial capabilities. In Chapter 5 we
analyze generic SAS-based message authentication protocols. We propose generic attacks
against any SAS-based message authentication protocol and we deduce some bounds on
their security according to the SAS length. As a result, we will define the notion of opti-
mality. Chapter 6 presents two security models: security in the stand-alone model and
security in more complex settings. The stand-alone model only considers one protocol exe-
cution and one adversary. It allows us to prove the security of protocols in a formalized way.
The latter is an important methodical advance, since one can pose many complex design
requirements on message authentication protocols. As an important theoretical result, we
prove that stand-alone security guarantees are preserved in complex settings as long as a
simple set of usage restrictions are satisfied. The latter significantly simplifies the security
analysis of SAS-based message authentication protocols. Indeed, since they do not rely on
common secrets, they preserve stand-alone security guarantees even in the Bellare-Rogaway
model. More precisely, we show that all SAS-based message authentication protocols are
universally composable as soon as they are secure in the stand-alone model. Chapters 7
and 8 focus on SAS-based message authentication protocols, unilateral and bilateral re-
spectively. Both chapters start with a state-of-the-art, propose new protocol(s), study the
works done between the publication of the protocols and the redaction of this thesis, and
finally present some applications. In short, Non-Interactive Message Authentication Proto-
col (NIMAP) were not well studied. Indeed, there were a remaining gap between the used
protocol and an optimal protocol. In this thesis, we propose an optimal NIMAP, called
PV-NIMAP. Note that it allows to use 100 authenticated bits only while currently 160 are
required. Regarding Interactive Message Authentication Protocols (IMAP), an optimal pro-
tocol was already been proposed by Vaudenay [Vau05b]. We concluded that there is no need
for further work. However, as small additional contribution, Vaudenay [Vau05b] proposed a
bilateral construction based on its unilateral one. Clearly, this construction is not optimal
with respect to the move complexity and no formal security proof was given. In this the-
sis, we propose two optimal bilateral protocols, a message mutual-authentication protocol,
called PV-SAS-MMA, and a message cross-authentication protocol, called PV-SAS-MCA.
The next natural step is to extend the above two-party protocols to any number of partic-
ipants. Chapter 9 has the same structure as the two previous chapters and propose an
optimal SAS-based group message authentication protocol, called LP-SAS-GMA. Finally,
Chapter 10 presents solutions to really build SAS-based Authenticated Key Agreement
(AKA) by using the previous SAS-based message authentication protocols. In particular,
this chapter gives two ready-to-use SAS-based key agreements: PV-SAS-AKA for two-party
settings and LP-SAS-GKA for group settings.

6

Chapter 1 - Introduction

1.2 Signatures Schemes (Part II)

In Part I, we have seen how to authenticate messages, e.g., public keys. In Part II, we
assume that parties already have authenticated public keys and want to authenticate mes-
sages.

We focus on two major issues of digital signature schemes and all related material is
presented in Part II. Chapter 11 gives an overview of the goals of different signature
schemes. Then, it defines the necessary background specific to signature schemes, such as
a classical signature scheme and its adversarial model, proof of knowledge, the notion of
zero-knowledge, etc.

The first sub-part is focused on privacy issues. Indeed, signed documents may lead to
privacy issues since a signature is a proof of authenticity. For instance, consider the case
of electronic passport (e-passport). A national authority creates an e-passport, stores all
required information in the chip, computes a digital signature on these information, and
stores it in the e-passport. Clearly, the signature is essential to prove that the stored
information are genuine and produced by the national authority. When a border patrol
checks the e-passport, he asks to obtain all information. The e-passport gives the stored
information as well as the digital signature. As expected, the border patrol is able to check
the genuineness of the data. However, as (un)expected, the border patrol may publish or
sell this information. The main problem is not the publication of the information, as the
person might still claim that information are false, but it is the publication of the signature.
Indeed, this latter confirms that the data are correct and the person only has to abdicate.
Chapter 12 carefully analyzes the situation. In particular, a new authentication mechanism
is proposed. The main idea is to prove the possession of a valid signature instead of giving
it. For instance, in the e-passport case, the signature will be kept secret in the chip. This
mechanism is called Offline Non-Transferable Authentication Protocol (ONTAP). Here, the
concept of offline non-transferability is important and means that the border patrol is not
able to prove the validity of the signature after the ONTAP is done.

The second sub-part is focused on weaknesses of signature schemes following the hash-
and-sign paradigm. Due to algebraic group operations, textbook signatures are often defined
for input messages of restricted length, typically hundreds of bits. Signing long messages
should be possible, so, before signing a (long) message, it will be pre-processed. Usually, the
pre-processing is a simple hash function. Hence, this way of signing is called hash-and-sign.
However, digital signatures are often proven to be secure in the random oracle model while
hash functions deviate more and more from this idealization. In Chapter 13, we start
by analyzing the different variants of the hash-and-sign. Many solutions were proposed
to avoid collision-resistance on hash functions. For instance, Bellare and Rogaway [BR97]
proposed to use target collision resistant (TCR) randomized pre-hashing. Later, Halevi and
Krawczyk [HK06a] suggested to use enhanced TCR (eTCR) hashing. Since the signatures
are randomized, the signature length increases. To avoid the increase in signature length

7

Sylvain Pasini

in the TCR construction, Mironov [Mir06] suggested recycling some signing coins in the
message pre-processing. Then, we will try to find a better model than the random oracle
model to formalize weak hash functions. Based on the work of Liskov [Lis07], we develop
the preimage-tractable random oracle model and use it. As a first result, we present a
generic pre-processing allowing to build strongly secure signature schemes even when the
hashing is weak and the internal (textbook) signature is weakly secure. As a second result,
we present a method to reuse some random coins from the signing algorithm to the message
pre-processing. Our method is applicable to any signature with randomized precomputation
(SRP) scheme (defined in this thesis) and, thus, is more generic than the one from Mironov.

1.3 Keyboard Compromising Electromagnetic Emanations

This study is not a part of this thesis. However, the work is interesting and it is a contribution
from the author of this thesis. The aim of this research is to give evidence that computer
keyboards may radiate compromising electromagnetic emanations [VP09].

We started this work by analyzing the password transition route. When a user types
a password, a huge amount of things occur: First, the user recalls it and types it on the
keyboard. Second, the keyboard detects the keystrokes. Third, it transmits them to the
computer. Fourth, the computer gets the keystrokes. Finally, the computer uses them, for
instance, to log in to the computer. If it is a web site or a distant server login, the computer
does some computations, for instance, encryption, and sends some data through the network.
In order to recover the password, there are many possible attacks and they may target any
step. One may use a video camera, a microphone, or an antenna to eavesdrop the typing
procedure. One may use a key-logger to eavesdrop the data between the keyboard and the
computer. One may use a Trojan horse or exploit a vulnerability in the operating system to
recover the data from the computer. Another one may spy the network in order to recover
the data passively, if they are encrypted, then he should try to decrypt them. Finally, one
may simply attack the server.

Nowadays, most practical attacks against computers exploit vulnerabilities on operating
systems or software applications. Plenty of new weaknesses are disclosed everyday. For-
tunately, the corresponding patches are commonly delivered within a few days. When the
vulnerability concerns hardware, generally no software update can avoid the exposure, the
device must be changed.

We noticed that keyboards or keypads are the first sensitive element of the chain (assuming
that we do not want to torture the password owner) while they are often used to transmit
sensitive information such as passwords, e.g., to log in to computers, to do e-banking money
transfer, to enter a credit card PIN number, etc. A weakness on these hardware devices will
definitely jeopardize the security of any computer or cash dispenser (ATM).

8

Chapter 1 - Introduction

Existing attacks on keyboards. There already exists some hardware-based attacks on
keyboards. One of them consists in putting a small token, called key-logger, between the
keyboard and the computer. This device eavesdrops all typed keystrokes and stores them
into a memory.

A simple video camera may be used to capture pressed keys [BCV08]. If no direct vision
is possible, one may use optical reflections [BDU08]. A blinking keyboard LED can also be
used as a covert channel [LU02].

Several works focused on the use of microphones. Each key emits a unique acoustic pattern
when it is pressed or released [AA04, ZZT05, BWY06].

Passive timing analysis may also be used to recover keystrokes. For instance, older SSH
implementations may be used to recover encrypted passwords [SWT01].

Electromagnetic emanations. Compromising electromagnetic emanation problems ap-
peared already at the end of the 19th century. Wire networks became extremely dense due
to the extensive use of telephone. As a consequence, people could sometimes hear other con-
versations on their phone line (crosstalk) due to undesired coupling between parallel wires.
These crosstalks may be easily canceled by twisting the cables.

Academic research on compromising electromagnetic emanations started in the mid 1980’s
and a significant progress has been done recently [QS01, AARR03]. The threat related
to compromising emanations has been constantly confirmed by practical attacks such as
Cathode Ray Tubes (CRT) displays image recovery [EL85], RS-232 communications re-
covery [Smu90], Liquid Crystal Display (LCD) image recovery [KA98], secret key disclo-
sure [GMO01], video displays risks [Kuh05, Tan07], and radiations from FPGAs [MÖPV07].

Our contribution. Since keyboards contain electronic components, they eventually emit
electromagnetic waves. These electromagnetic radiation may reveal sensitive information
such as keystrokes. Although Anderson and Kuhn [KA98, AK99, Kuh03] already tagged
keyboards as risky. They also proposed countermeasures (see US patent [AK04]). However,
we did not find any experiment or evidence proving or refuting the practical feasibility to
remotely eavesdrop keystrokes, especially on modern keyboards.

To detect compromising emanations, we generally use a receiver tuned on a specific fre-
quency. However, this method may not be optimal since a significant amount of information
is lost during the acquisition of the signal. Our approach is to acquire raw signal directly
from the antenna and to process the entire captured electromagnetic spectrum.

Thanks to our method, we uncovered four different ways to fully or partially recover
keystrokes from wired and wireless keyboards. We implemented a practical attack based
on these weaknesses. It recovers 95% of the keystrokes at a distance up to 20 meters, even
through walls.

We tested 12 different keyboard models bought between 2001 and 2008 (PS/2, USB,

9

Sylvain Pasini

wireless and laptop). They are all vulnerable to at least one of our four attacks. We conclude
that most modern computer keyboards generate compromising emanations (mainly because
of the manufacturer cost pressures in the design). Hence, they are not safe to transmit
highly confidential information.

Relation with this thesis. There is no direct link between this research and this thesis.
However, one can note that the channel user-keyboard-computer is assumed to provide
confidentiality, authenticity and integrity. The present study gives evidence that there exists
many solutions to eavesdrop keystrokes at a distance. Hence, the keyboard does not seem to
achieve confidentiality, but it provides authenticity. Application designers should keep this
in mind. They should try to avoid the use of PIN codes (confidential) and instead prefer
the use of SAS (authenticated).

10

Chapter 1 - Introduction

Academic Contributions from the Author

[PV06a] An Optimal Non-interactive Message Authentication Protocol.
Sylvain Pasini and Serge Vaudenay.
In the proceedings of the Cryptographers’ Track at the RSA Conference –
CT-RSA ’06.
Contribution of this paper can be found on Chapters 4, 5, and 7.

[PV06b] SAS-based Authenticated Key Agreement.
Sylvain Pasini and Serge Vaudenay.
In the proceedings of Public Key Cryptography – PKC ’06.

Contribution of this paper can be found on Chapters 4, 8 and 10.

[PV07] Hash-and-sign with Weak Hashing Made Secure.
Sylvain Pasini and Serge Vaudenay.
In the the proceedings of the Australasian Conference on Information Se-
curity and Privacy – ACISP ’07.

Contribution of this paper can be found on Chapter 13.

[LP08] SAS-Based Group Authentication and Key Agreement Protocols.
Sven Laur and Sylvain Pasini.
In the proceedings of Public Key Cryptography – PKC ’08.

Contribution of this paper can be found in Chapters 4, 6, 9, and 10.

[LP09] User-Aided Data Authentication.
Sven Laur and Sylvain Pasini.
In the International Journal of Security and Networks, 2009.

Contribution of this paper can be mainly found on Chapters 4 and 6.

[MPV09] Efficient Deniable Authentication for Standard Signatures.
Jean Monnerat, Sylvain Pasini, and Serge Vaudenay.
In the the proceedings of the International Conference on Applied Cryp-
tography and Network Security – ACNS ’09.

Contribution of this paper can be found on Chapters 11 and 12.

[VP09] Compromising Electromagnetic Emanations of Wired and Wireless Key-
boards.

Martin Vuagnoux and Sylvain Pasini.
In the proceedings of USENIX Security ’09.

Not a part of this thesis.

11

Sylvain Pasini

12

Chapter

TWO

The Authentication Problem

One of the main issues in cryptography is the establishment of a secure peer-to-peer (or
group) communication over an insecure channel. With no assumption, such as availability
of an extra secure channel, this task is impossible. However, given some assumption(s),
there exists many ways to setup a secure communication. The application designer chooses
the most suitable solution depending mainly on the assumptions, the requirements, the
efficiency, and of course the required security.

Section 2.1 surveys some cryptographic primitives. Of course, most of the readers can
skip this folklore section which is here for completeness and to make the reader familiar
with the terminology. Section 2.2 surveys some different communication ways that human
beings are able to use to communicate. Section 2.3 points out that setting up a secure
communication can be practically done simply by authenticating some data. Section 2.4
recalls that authenticated messages are in general long and thus their authentication may
be tedious, e.g., by phone. This section shows how protocols are able to reduce the amount
of authenticated data. Section 2.5 presents techniques for message authentication that are
different of usual ones. Finally, Section 2.6 summarizes the chapter and motivates the
separation of this thesis in two parts.

13

Sylvain Pasini

2.1 Basics in Cryptography

We consider a message source and a message destination. The source wants to send a message
m to the destination with some security properties. We denote by m̂ the received message
since it may be different from m. The main cryptographic properties are the following:

• Confidentiality aims at preserving the secrecy of the message. Nobody except the
destination can deduce information on the transmitted message.

• Authenticity aims at guaranteeing that the message was sent by the source.

• Integrity aims at guaranteeing that the message m̂ received by the destination is the
same as the message m sent by the source.

In the following, the different solutions are classified depending on the assumptions done
on the extra channel. In the figures, we use the notation C, A, and/or I for channels
achieving respectively confidentiality, authenticity, and/or integrity. If nothing is specified,
the channel is insecure.

2.1.1 Symmetric Cryptography

Using symmetric cryptography, it is possible to establish a secure peer-to-peer channel only
assuming that we can agree on a private and authenticated key. This model was presented
by Shannon [Sha49]. Often we refer to this model by symmetric cryptography because the
source and the destination use the same key.

Confidentiality. Confidentiality over an insecure channel can be achieved using symmetric
encryption. As depicted in Figure 2.1, it is possible to send confidential messages over
an insecure channel from a source to a destination. This model [Sha49] is only applicable
in the situations where parties are able to use an extra channel achieving confidentiality,
authenticity, and integrity.

Symmetric encryption can be done using either stream ciphers, like E0 [Blu03], or block
ciphers, like DES [DES77, DES99], AES [AES01], or FOX [JV03].

Authenticity and integrity. Authenticity and integrity on the insecure channel can also be
achieved with symmetric cryptography by using message authentication codes (MAC). As
depicted in Figure 2.2, it is possible to achieve authenticity and integrity on the messages
transmitted over an insecure channel from a source to a destination. As before, this is only
possible if parties are able to use an extra channel achieving confidentiality, authenticity,
and integrity.

14

Chapter 2 - The Authentication Problem

Source Encryption Decryption

Key source

Destination

Adversary

m̂ĉcm

k
k

k

C-A-I

Figure 2.1. The Shannon Model.

Source

MAC

Key source

Destination

Adversary

k
k

m m̂

ĉ

m̂, ĉm, c

c

m̂m

MAC
=

valid/not

C-A-I

Figure 2.2. Authentication with Symmetric Cryptography.

15

Sylvain Pasini

Note that MACs can be built using hash functions or ciphers. HMAC by Bellare-Canetti-
Krawczyk [BCK96] is an example of a construction based on hash functions while the One-
Key CBC MAC (OMAC) by Iwata and Kurosawa [IK03] is an example based on block
ciphers.

2.1.2 Agreeing on a Secret Key without Confidential Channel

In the previous model, confidentiality on the extra channel is mandatory to achieve confi-
dentiality on the insecure channel. There is no gain except the extra channel bandwidth.
Merkle [Mer78] and Diffie-Hellman [DH76] discovered at the same time that the confiden-
tiality on the extra channel can be relaxed. Indeed, their model reduce the confidential
extra channel to an authenticated extra channel. As depicted in Figure 2.3, the extra chan-
nel is still used to agree on a private key but the difference is that the key itself is not
sent directly. Indeed, the secret key is the result of a protocol execution, also called a key
agreement protocol.

Source Encryption Decryption Destination

Adversary

m̂ĉcm

kk

Agreement AgreementA-I

Figure 2.3. The Merkle-Diffie-Hellman (MDH) Model.

One of the most well-known key agreement protocol is due to Diffie and Hellman [DH76]
and is usually called the DH protocol. As depicted in Figure 2.4, it requires only two moves.
In order to avoid man-in-the-middle attacks, these two moves should be authenticated.

Alice Bob
pick x ∈u |G| pick y ∈u |G|

X ← gx X−−−−−−−−→
Y←−−−−−−−− Y ← gy

K ← Y x = gxy K ← Xy = gxy

Figure 2.4. The Diffie-Hellman (DH) Key Agreement Protocol.

Both parties know the public parameter g which spans a group G. Alice picks a random

16

Chapter 2 - The Authentication Problem

number x and computes X ← gx while Bob picks a random y and computes Y ← gy. Then,
Alice sends X to Bob and Bob sends Y to Alice. Alice, resp. Bob, computes Y x, resp.
Xy, and both result in gxy. Now, both of them share a secret key K = gxy. Note that g
is chosen such that for any adversary who knows g, X, and Y it is hard to retrieve x and
y (Discrete Logarithm Problem). So, anyone seeing (or eavesdropping) X and/or Y is not
able to deduce x or y since the discrete logarithm is hard. Consequently, it is hard to find
the key K. On the other hand, with no authentication an adversary can run a man-in-the-
middle attack between the two participants, so the authentication of the two messages is
mandatory for this protocol.

2.1.3 Public-Key Cryptography

Public-key cryptography stands for any scheme for which the knowledge of a public-key does
not compromise security. The problem of the MDH model is that it is only adapted to key
agreement protocols and cannot achieve confidentiality directly. This becomes possible if
we combine the key agreement protocol with some symmetric cryptographic primitives.

In this section, we concentrate on public-key primitives. Indeed, by using public-key
cryptography, it is also possible to achieve confidentiality and authenticity on the insecure
channel. Of course, with public-key cryptography, we still relax the confidentiality hypoth-
esis on the extra channel.

Confidentiality. Confidentiality over the insecure channel can be achieved using public-key
encryption. As depicted in Figure 2.5, the destination should first execute a key generation
algorithm which creates a key pair, e.g., a private key and a public key. Then, anyone
knowing the public key of the destination is able to send confidential messages to him. Only
the owner of the corresponding private key, in this case the destination, is able to decrypt
the received messages. The use of this model is only possible if the source is ensured to use
the correct public key, otherwise this model is subject to man-in-the-middle attacks.

Well-known examples of public-key cryptosystems are RSA [RSA78] and ElGamal [ElG85].

Authenticity and integrity. Authenticity and integrity on the insecure channel can be
achieved with public-key cryptography, too. It is done by using digital signature schemes.
As depicted in Figure 2.6, unlike the encryption, the key generation is done by the source.
Then, the source signs the message and sends the message-signature pair to the destination.
At the destination, the received message-signature pair is verified by using the public key.
As for the encryption, the use of this model is only possible if the destination is ensured to
use the correct public key, otherwise this model is subject to man-in-the-middle attacks.

Typical examples of textbook digital signature schemes are RSA [RSA78] and ElGa-

17

Sylvain Pasini

Source Encryption Decryption Destination

Adversary

m̂ĉcm

Key
Generator

Kp

Ks

A-I

Figure 2.5. The Public-Key Encryption Model.

Source

Signature Verification

Destination

Adversary

Key
Generator

m

σ

m, σ m̂, σ̂ m̂

σ̂

Kp

Ks

valid/not

Kp

m̂m

A-I

Figure 2.6. The Public-Key Authentication Model.

18

Chapter 2 - The Authentication Problem

mal [ElG85]. In practice one may for instance use the Digital Signature Standard (DSS)
[DSS94, DSS00] (based on ElGamal).

Public Key Infrastructure. One major problem with public-key cryptography is the trans-
mission of the public key. Indeed, any public key can only be used if we are sure that the
owner of the corresponding private key is really the correct person. For instance, if Alice
wants to send an encrypted message m to Bob, she will encrypt it with the public key of
Bob KBob

p . So, before that, Bob should send the public key to Alice in some way. If he just
send it with no precaution, an adversary may replace this key by its own one and then be
able to decrypt all messages as depicted in Figure 2.7.

Alice A Bob

input: m input: KBob
p ,KBob

s

bKp←−−− (K̂p, K̂s)← keygen()
KBob

p←−−−
ĉ← enc(K̂p,m)

bc−−−→ m← dec(K̂s, ĉ)

c← enc(KBob
p ,m)

c−−−→ m← dec(KBob
s , c)

Figure 2.7. The Folklore Man-in-the-Middle Attack During a Public-Key Transfer.

Here, the adversary A relays the message m from Alice to Bob, so the only benefit for
A is the eavesdropping of the communication. However, we can imagine scenarios where A
modifies the messages from Alice before sending it to Bob.

To protect against such an attack, we need to authenticate the public key. In the following,
we describe the functioning of a Public Key Infrastructure (PKI). We will see later other
methods allowing to authenticate public keys with no infrastructure and no trusted parties.

We first need to introduce the notion of a certificate. Basically, a certificate contains an
identity, a public key, an expiration date, and a certificate signature. It is used to prove that
the public key is binded to the identity (until the expiration date). For that, a third party
signed the data in order to produce the certificate signature. So, anyone knowing the public
key of the third party is able to verify the validity of the whole certificate. In Figure 2.8,
we use the same example as before, but with certificates. Alice wants to send an encrypted
message m to Bob. So, Bob should give his public key KBob

p to Alice. For that, he will ask

Trent to obtain a certificate, i.e., certBob. The public key of Trent, i.e., KTrent
p , is known

(and authenticated) by everyone. In short, Alice is able to authenticate the public key of
Bob given the public key of Trent. There is some kind of recursion. From the point of view
of Alice, she should obtain the public key of Trent (in any way, e.g., by using a certificate)
and in addition she should trust Trent.

19

Sylvain Pasini

Trent Bob

input: KTrent
p ,KTrent

s input: KBob
p ,KBob

s

KBob
p←−−−−−−−−

certBob ← certify(KTrent
s ,KBob

p ,Bob, exp date)
certBob

−−−−−−−−→

Alice Bob

input: m,KTrent
p input: KBob

p ,KBob
s

verify(KTrent
p , certBob)

certBob

←−−−−−−−−
c← enc(KBob

p ,m)
c−−−−−−−−→ m← dec(KBob

s , c)

Figure 2.8. The Use of Certificates.

A Public Key Infrastructure (PKI) is used to handle the creation, the management, and
the distribution of certificates. A PKI consists of Certificate Authorities (CA), Registration
Authorities (RA), and certificate directories. In short, a CA creates and signs certificates
for entities. For that a CA possesses a key pair and a root certificate for its public key.
The root certificate may be certified by another CA. This leads to a CA hierarchy. One CA
receiving a certificate should verify it by checking each certificate from the trusted CA (the
one he knows the public key from) to the final certificate. This is also known as the chain of
trust. A CA may delegate the registration of entities to a RA. The RA is only responsible
to identify the entity, but cannot output certificates without the CA. In fact, only the CA
knows the private signing key for yielding certificates to entities.

One of the main PKIs in use today is the one implemented for the World Wide Web.
When a user opens a secure Web page (HTTPS, or HTTP with SSL), the server sends a
certificate to the browser. The browser should then verify the validity of the certificate.
Clearly, a browser does not know the certificate of all web sites in the world. In general,
Web browsers only integrate certificates of popular CAs and trust them (by default). In
order to be verifiable, the Web server should obtained a certificate for its public key from
a popular CA. So, the Web browser is able to check the validity of the received certificate
(through the CA) and then to start a secure session with the Web server.

20

Chapter 2 - The Authentication Problem

2.2 Communication Channels

In this section, we analyze the different channels at disposal for any human being. Human
beings can communicate with different communication channels and they choose one of them
depending on some requirements. For example, if a human being needs to reach another
human being for urgent matters, he must choose a channel with high availability and low
latency such as a telephone link. But, if he wants to transfer money, he must establish a
more reliable link for instance by going to the desk to encounter the banker. (Nowadays, he
can use the Internet with prior established security association.)

The security of communication channels can be characterized by some security attributes
which are defined below.

Definition 2.1 (Security Attributes).
Suppose a communication channel between a sender and a receiver. A message m is sent
and a message m̂ is received. We define the following security properties:

Confidentiality assumes that only the legitimate receiver can read the message m̂.

Integrity assumes that the received message m̂ is the same as the sent message m, i.e.,
m̂ = m.

Authenticity assumes that only the legitimate sender can input a message m into the
channel. This is often combined with integrity, i.e., m = m̂.

Freshness assumes that the received message m̂ was not received before.

Liveliness assumes that a message m which has been sent by the sender will eventually
be delivered to the receiver.

Timeliness assumes that a message m which has been sent by the sender will be delivered
to the receiver in real time (transmission time in negligible).

In addition, to compare the different human communication channels, it is necessary to
define other properties which characterize the usability of these channels. These communi-
cation properties are defined below.

Definition 2.2 (Communication Properties).
Suppose a communication channel between a sender and a receiver. We define the follow-
ing communication properties:

The cost represents the required amount of money spent to establish the communication
channel and to transmit a message.

The availability expresses the fact that the channel can easily be established at any time.

21

Sylvain Pasini

The speed rate represents the amount of data that can be transferred through the chan-
nel for a fixed time duration.

The latency represents the amount of time between the moment when the message is
sent and the moment when it is received.

Using Definition 2.1 and Definition 2.2, it is possible to compare the usual human com-
munication channels in a cryptographic sense.

Face to face (voice) conversation allows perfect authentication, perfect integrity and in
certain cases, confidentiality. In addition, freshness, liveliness, and timeliness are trivially
ensured. However, this channel can have a very high cost if, for example, the two persons
are far from each other. For the same reasons, the availability is also bad. Note that the
communication has (almost) no latency but a low speed rate. In conclusion, this human
channel achieves high security but low throughput.

Telephone is less secure than a face to face conversation. It allows a third party to spy
the communication and thus does not guarantee confidentiality. On the other hand, it has a
much lower cost and a higher availability. In short, it still preserves authentication assuming
that both users can recognize each others’ voice. Integrity and freshness is also guaranteed,
indeed it is pretty hard to modify a message in real time as it is integrated in an interactive
conversation.

Mail, like a postcard or a parcel, is not confidential either. It can be easily lost and thus
this channel does not guarantee liveliness. We can consider that a handwritten mail achieves
authentication by assuming that the recipient can identify the writing. As for telephone,
this channel guarantees availability but has a long latency.

Voice mail is in a security sense close to mail except that it can be easily replayed and so
messages may not be fresh. Note that voice mail (as well as fax) may have a certain amount
of latency since we do not know when the recipient will read the message.

Electronic mail is the worst communication channel in terms of security, it protects nothing
by itself. However, it is the most usable communication channel and its costs is very small
(too small if we consider the spam phenomenon), the availability and the speed rate are
very high.

A short overview of the security and communication properties for each human commu-
nication channel is described in Figure 2.9. The pictogram , indicates that the property
on the channel is a good feature. Note that the choice is in fact a trade-off between the
security and the human usability. In other words, the most secure channel is a face to face
conversation but it is the least usable. In the other hand, the most usable is the email but
it is the least secure. For a specific use, the choice of the human communication channel is
a trade-off between the required security and the available cost.

22

Chapter 2 - The Authentication Problem

Encounter Telephone Fax Mail Voice mail E-mail

Authenticity , , , ,

Integrity , , , ,

Confidentiality ,

Freshness , , ,

Liveliness , ,

Timeliness , ,

Interactivity , ,

Low cost , , , , ,

Availability , , , ,

Speed rate , ,

Low latency , ,

Figure 2.9. The Common Human Communications Channels

Remark 2.3.
With no prior security association, confidentiality is achieved only using a face to face
conversation which can be very expensive in certain cases. However, a phone call, which
is very easy to setup worldwide, achieves authentication assuming that the two speakers
can identify each other by recognizing his voice/behavior.

In the next section we study the problem of the encapsulation of a secure communication
channel on insecure (but cheap) channels.

2.3 Towards Usable Solutions to Setup Secure Communications

As described in Section 2.1, assuming a shared secret key it becomes trivial to setup a secure
communication by using symmetric cryptography.

Remark 2.4.
Setting up a secure communication can be reduced to the problem of agreeing on a shared
secret key.

The problem is now the exchange (or the agreement) of the shared secret key. To relax
the confidentiality assumption on the extra channel, one can propose to protect the com-
munication by using public-key cryptography. In this case, each participant only need to
authenticate its public key to the other ones. However, public-key encryption is slow and
costly comparatively to symmetric encryption. We want to limit its use as much as possible
in order to build efficient systems (for lightweight devices). So, in order to obtain efficient
systems, data communication should be protected by using symmetric cryptography.

23

Sylvain Pasini

Remark 2.5.
We will try to restrict the use of public-key cryptography, i.e., use it only to exchange the
shared secret key.

Key Agreement Protocols. As depicted in Figure 2.3, following the MDH model, it is
possible to relax the confidential assumption on the extra channel by running key agreement
protocols. For instance, running a DH protocol allows the two participants to agree on a
shared secret key while any adversary spying the protocol is not able to deduce the secret key.
However, such protocols are subject to man-in-the-middle attacks and, as a consequence,
such communications require authentication (and integrity).

Semi-authenticated Key Transfer. Thanks to public-key cryptography, it is possible to
send confidential messages to a recipient by encrypting them using the recipient’s public key.
Then, only the recipient (the owner of the corresponding private key) is able to decrypt the
messages. In the case where the message is a symmetric key, we obtain a semi-authenticated
key transfer, for example using RSA [RSA78], as depicted in Figure 2.10.

Source Encryption Decryption Destination

Adversary

k̂ĉck

Key
Generator

Kp

Ks

A-I

Figure 2.10. The Semi-Authenticated Key Transfer.

At the beginning, the extra channel provided confidentiality. Thanks to key agreement
protocols or to semi-authenticated key transfer, we only need an extra authenticated channel.

Remark 2.6.
A shared secret key can be established by exchanging messages and only ensuring their
authenticity and integrity (no need of confidentiality at all).

Remark 2.3 says that an extra channel which achieves only authenticity can be established
simply by telephone. Thus, with Remark 2.6, we can setup a secure communication over an
insecure channel without requiring to encounter, but simply using telephone to exchange,
in an authenticated way, the DH messages or a public key.

24

Chapter 2 - The Authentication Problem

2.4 Message Authentication

Thanks to the previous section, we are now able to setup a secure communication only by
exchanging some authenticated messages, e.g., by telephone. So, we no longer need any
confidential assumption on the extra channel at all. However, there still remains a problem:
exchanging DH messages or a public key by telephone is tedious since they are long. Indeed,
an authenticated channel could be seen as an expensive channel. So, we should try to
optimize the amount of communication over this channel. Message authentication can be
done in different ways:

First, there is user-aided message authentication protocols. In practice, the (long) messages
that should be authenticated will be sent over the insecure channel and some additional
(short) messages will be sent over the extra channel. An example is the folklore protocol
used in SSH and PGP as depicted in Figure 2.11. The protocol sends the message to be
authenticated, e.g., the public key Kp, over the insecure channel, then authenticates by a
human channel its ”fingerprint”, denoted by f(Kp) in Figure 2.11, and compares the locally
computed fingerprint with the one authenticated.

SSH client SSH server

Adversary

KpK̂p

Verification
valid/not

f(Kp)

f

f

A-I

Figure 2.11. The SSH Public Key Authentication Model.

Another way to authenticate data is to use message authentication codes (MACs) as seen
in Figure 2.2. This solution seems an overkill. Indeed, we are trying to agree on a shared
secret key to setup a secure communication while we also need one to authenticate messages.

Finally, we can use the MACs equivalent in public-key cryptography: signature schemes.
This latter solution requires the authentication of the public key of the signer. Note that
the authentication of this public key can be done by using a message authentication pro-
tocol (as explained just above), or with the help of a trusted third party, e.g., a public-key
infrastructure. In both cases, we relax the confidentiality assumption on the extra channel.

Remark 2.7.
In conclusion, to setup a secure communication, we either need a user-aided message

25

Sylvain Pasini

authentication protocol or a signature scheme. In the first case, we need to rely on an extra
authenticated channel (telephone, string copy between devices, etc.) while in the second
case, we need to rely on the authentication of a public key. This latter authentication can
be also done with a user-aided message authentication protocol or with the help of a trusted
third party (like a PKI).

2.5 Other Ways for Message Authentication

Here, we briefly present some protocols ensuring message authentication and requiring no
pre-shared key and no trusted third party.

2.5.1 Protocols Using Time Bounding

A method to setup secure communications based on vocal biometric signals was proposed
by Wu, Bao, and Deng [WBD05]. The protocol is depicted in Figure 2.12. It allows Alice to
authenticate Bob and to setup a secret session key. Note that it uses DH values to establish
the secret session key. These values are authenticated using voice signals and agreed upon
with the help of a timer which allows to detect man-in-the-middle attacks.

In the proposed protocol, Alice, resp. Bob, chooses a value x, resp. y, and computes
the DH value X ← gx, resp. Y ← gy. Alice, resp. Bob, computes their local key by
hashing their DH value, i.e., KA ← H(X), resp. KB ← H(Y). Then, Alice records a “voice
challenge” CA which is authenticated by her voice. Then, she sends an encrypted value ECA

to Bob. The encryption is done using her local key KA. The “voice challenge” can be for
instance the sentence “what did you wrote in your last mail?” or anything which leads to
a fresh answer and which can easily be answered by Bob but not so easily by others. Bob
makes the same operations and sends ECB

to Alice. Each recorded “voice challenge” must
be at least of duration T . We stress that at this time nobody can listen to the challenges
since they are encrypted and the keys are kept secret. Alice starts a timer and reveals her
DH value X. Then, Bob computes K̂A, i.e., K̂A ← H(X̂), decrypts the challenge of Alice,
listens to it, and tries to recognize her voice. If the voice is not the one of Alice, Bob stops
the protocol, otherwise he records a response RB to the challenge CA. Bob can now compute
the common key KBA using the DH protocol, i.e., KBA ← X̂y. He encrypts the response
using the common key KBA, sends the encrypted response and reveals his DH value Y .
When Alice receives the values, she stops the timer. She can now deduce the common key
KAB , i.e., KAB ← Ŷ x, and the key of Bob, i.e., KB ← H(Ŷ). Now, she can listen to the
challenge of Bob ĈB and to the response of Bob R̂B to her challenge CA. Finally, she checks
the time elapsed, the identity of the two voice messages from Bob, and whether the response
is consistent with the challenge or not.

To understand the role of the timer, a man-in-the-middle attack is presented in Figure 2.13.

26

Chapter 2 - The Authentication Problem

Alice Bob

pick x ∈u {0, 1}k pick y ∈u {0, 1}k
X ← gx Y ← gy

KA ← H(X) KB ← H(Y)

CA ← record()

ECA
← encKA

(CA)
ECA−−−−−−−−→

CB ← record()
ECB←−−−−−−−− ECB

← encKB
(CB)

start(timer)
X−−−−−−−−→ K̂A ← H(X̂)

KBA ← H(X̂y)

ĈA ← dec bKA
(ÊCA

)

check identity(ĈA)

RB ← record()

ta ← stop(timer)
ERB

‖Y
←−−−−−−−− ERB

← encKBA
(RB)

K̂B ← H(Ŷ)

KAB ← H(Ŷ x)

ĈB ← dec bKB
(ÊCB

)

R̂B ← decKAB
(ÊRB

)

check ta, identity(ĈB), identity(R̂B)

check consistence(CA, R̂B)

output: Bob,KAB output: KBA

Figure 2.12. Semi-Authenticated Key Agreement Using Voice Records.

27

Sylvain Pasini

An adversary A can obtain a challenge from Alice CA simply by answering a challenge C ′
B

since it is encrypted and thus cannot be verified by Alice at this moment. Alice responds
with her DH value X and gives CA to any adversary. Note that the adversary A cannot
mimic Bob, but he can encrypt an old challenge of Bob (replay), i.e., Cold

B . The adversary
A show now respond to the challenge of Alice. It cannot mimic Bob and consequently he
has to request Bob to respond to the challenge CA from Alice. He proceeds simply by
impersonating Alice to Bob, submitting the challenge CA and obtaining the response RB .
Finally, the adversary answers to Alice with the response RB (encrypted) from Bob.

Alice A Bob

KA KZ KB
ECA−−−→
bECB←−−− ÊCB

← encKZ
(Cold

B)

start(timer)
X−−−→ CA ← decKA

(ECA
)

ÊCA
← encKZ

(CA)
bECA−−−→
ECB←−−− CB ← record()

Z−−−→ listen(CA)

RB ← decKB
(ERB

)
ERB

‖Y
←−−−− RB ← record()

ta ← stop(timer)
bERB

‖Z
←−−− ÊRB

← encKZ
(RB)

output: Bob,KAZ output: KZA output: KBZ

Figure 2.13. Man-In-The-Middle Attack (Simplified Version).

Note that the time elapsed ta corresponds to the time for Bob to record the challenge
CB , to listen to the challenge CA from Alice, to record the response RB, and some duration
δ for computations and transmissions, i.e., ta = |CB | + |CA| + |RB | + δ ≥ 3T + δ. With
no attack, Bob does not have to record his challenge during this time interval since it has
been recorded before, i.e., ta = |CA| + |RB | + δ ≥ 2T + δ. Using the timer, Alice can
detect man-in-the-middle attacks. This attack shows the important role of the timer in this
protocol.

We note that this protocol is very sensitive to the time in which Bob responds. Suppose
Bob has made a mistake in his record sample and records another one. He has listened
to the challenge of Alice and recorded two samples. Thus, the time elapsed seems to be
a man-in-the-middle attack. In conclusion, this protocol is quite hard to implement in a
user-friendly way since the timing is constrained for Bob.

28

Chapter 2 - The Authentication Problem

2.5.2 Protocols Using Distance Bounding

Brands and Chaum [BC93] proposed a practical method to upper bound the physical dis-
tance between two devices. For instance, during an authentication phase between an em-
ployee and an access control, the system would like to be ensured that the employee is
nearby, i.e., within a few meters. The proposed principle is quite simple. It consists of
a challenge-response using only one-bit messages. The verifier V sends a bit (challenge)
and the prover P replies immediately with a bit (response). They assume that electronic
devices which play the role of the prover can have very short timings between the reception
of a challenge and the sending of the corresponding response. The verifier V has simply
to measure the time elapsed between the sending of the challenge and the reception of the
response. Knowing the time elapsed, it can easily deduce the maximal distance between
them. Two attacks are described in [BC93]: the mafia fraud which is a man-in-the-middle
attack where the adversary is a fraudulent verifier at the same time as a fraudulent prover
and an attack in which the prover P sends bits out too soon. Solutions for preventing both
attacks are proposed in [BC93] and the final protocol proposed is depicted in Figure 2.14.

P V

∀i ∈ {1, . . . , k} : mi ∈R {0, 1} ∀i ∈ {1, . . . , k} : αi ∈R {0, 1}
(c, d)← commit(m1‖ · · · ‖mk)

c−−−−−−−−→

Begin of rapid exchange
αi←−−−−−−−−

βi ← α̂i ⊕mi
βi−−−−−−−−→ m̂i ← β̂i ⊕ αi

End of rapid exchange

m← α1‖β1‖ · · · ‖αk‖βk

σ ← sign(m)
d‖σ−−−−−−−−→ m̂← α1‖β̂1‖ · · · ‖αk‖β̂k

check (c, d) = commit(m̂1‖ · · · ‖m̂k)
check σ̂ = sign(m̂)

Figure 2.14. Distance Bounding Protocol.

Based on this distance upper bounding, Cagalj, Capkun, and Hubaux [CCH05] proposed a
key agreement protocol for wireless networks, in particular for peer-to-peer communication.
It allows the parties to authenticate DH values given in input. In the previous protocol, it
is not clear how the prover should sign the message. Cagalj, Capkun, and Hubaux [CCH05]
propose a method which only needs authentication. The protocol is depicted in Figure 2.15.

29

Sylvain Pasini

Alice Bob

input: idA, g
XA input: idB, g

XB

Pick NA, RA ∈u {0, 1}k Pick NB, RB ∈u {0, 1}k
mA ← 0‖idA‖gXA‖NA mB ← 1‖idB‖gXB‖NB

(cA, dA)← commit(mA) (cB , dB)← commit(mB)

(c′A, d
′
A)← commit(0‖RA)

cA‖c′A−−−−−−−−→ (c′B , d
′
B)← commit(1‖RB)

cB‖c′B←−−−−−−−−
dA−−−−−−−−→ m̂A ← open(ĉA, d̂A)

Verify 0 in m̂A

m̂B ← open(ĉB , d̂B)
dB←−−−−−−−− iB ← NB ⊕ N̂A

Verify 1 in m̂B

iA ← NA ⊕ N̂B

Begin of Distance Bounding Phase
β0 = 0

αi ← RA,bit i ⊕ iA,bit i ⊕ β̂i−1
αi−−−−−−−−→
βi←−−−−−−−− βi ← RB,bit i ⊕ iB,bit i ⊕ α̂i

End of Distance Bounding Phase

d′A−−−−−−−−→ 0‖R̂A ← open(ĉ′A, d̂
′
A)

1‖R̂B ← open(ĉ′B , d̂
′
B)

d′B←−−−−−−−−
îB,bit i ← αi ⊕ β̂i ⊕ R̂B,bit i îA,bit 1 ← α̂1 ⊕ R̂A,bit 1

îA,bit i ← α̂i ⊕ βi−1 ⊕ R̂A,bit i

check iA = îB check iB = îA
check integrity region check integrity region

output: îdB, iA output: îdA, iB

Figure 2.15. Key Agreement Protocol Using Distance Bounding.

30

Chapter 2 - The Authentication Problem

Brands and Chaum [BC93] proposed a method that prevents frauds where an adver-
sary runs a man-in-the-middle attack between a legitimate prover and a legitimate verifier.
Frauds where a malicious prover and an adversary collaborate to cheat a verifier have been
left opened. Bussard and Bagga [BB05] propose a solution for preventing both types of
attacks.

Distance-bounding authentication cannot be used through the Internet since users are
in general far apart and some other users are closer to the participants (with very high
probability). In general, this is not very useful for wired links.

In conclusion, this method is not useful for authentication in large networks, but is well
adapted for local wireless networks such as mobile phones, headset or PDAs which are very
close. We do not go into further details in distance bounding protocols since we concentrate
on general methods to establish worldwide authentication.

2.6 Setting up a Secure Communication in a Nutshell

This section summarizes the whole chapter focusing on solutions that can operate around
the world.

Considering an extra channel achieving authentication. If we assume that an extra
authenticated channel is available, then it is quite trivial to authenticate messages.
Thanks to authenticated messages, users are able to agree on a common shared se-
cret key by using a key agreement protocol following the MDH model as depicted in
Figure 2.3. Users are also able to agree on a shared secret key by using the semi-
authenticated key transfer as depicted in Figure 2.10.

Since the authentication of long messages is tedious, users will prefer to use a user-
aided message authentication protocol. Such protocols aim to optimizing the amount
of authenticated communication. Indeed, the (long) message to be authenticated is
sent over the insecure channel and additional (short) authentic information is sent
over the extra authenticated channel. In fact, it is a trade-off between the amount
of authentic communication and the probability of success of a malicious party. All
details concerning message authentication protocols are given in Part I.

Considering a trusted third party. If the users are not in an ad-hoc network and a
trusted third party, e.g., a PKI, is accessible, then the authentication of messages
can be trivially done by using a signature scheme. To agree on a shared secret key,
as before they can use the MDH model of Figure 2.3 but the difference is that mes-
sage authentication is done by digital signatures instead of an extra authenticated
communication. Details related to signature schemes are treated in Part II.

31

Sylvain Pasini

Considering a trusted setup phase. One may combine the advantages of both setups:
the first setup requires no trusted third party and no pre-shared information while
the second setup requires no user interaction. So, one may use the first solution, e.g.,
use a user-aided message authentication protocol, to exchange long-term signature
verification keys. Then, these public keys may be used to authenticate messages, e.g.,
of a DH protocol. This combination requires no trusted third party and no pre-shared
key. At the same time, it requires user interaction only once for several sessions (while
before it required user interaction for each new session).

Following Remark 2.7 and the above summary, this thesis is split in two parts: the first
part focuses on user-aided message authentication protocols while the second part focuses
on digital signatures schemes.

32

Chapter

THREE

Preliminaries

This chapter introduces the necessary notions and definitions used throughout this thesis. In
particular, it presents hash functions which is one of the most used cryptographic primitives.
It also defines several models of commitment schemes such as tag-based or not, keyed or
not, and different types of trapdoors. This chapter also recalls the random oracle and the
common reference string models.

3.1 Notations

Let S be a finite set. We write s ∈u S to say that s is uniformly distributed in the set S
and we write s←u S to say that s was picked uniformly from the set S.

Throughout this thesis the term “algorithm” stands for a probabilistic polynomial-time
(PPT) Turing machine modeled by deterministic functions in terms of an input and random
coins. When dealing with protocols, we use P and V to denote the prover and verifier
respectively. If nothing else is stated, they are both considered to be PPT algorithms.

We denote by protP(α),V(β)(γ) an instance of the protocol “prot” between P and V. The
element γ denotes the common input of all participants, e.g., public keys, while α (resp. β)
describes the private input of P (resp. V). Note that when the protocol is not known or is im-
plicitly known, the interaction between the two parties can be denoted by 〈P(α),V(β)〉 (γ).

In some cases, we need to describe only the view of a party, say for instance V. We denote

33

Sylvain Pasini

it by ViewV(protP(·),V(·)(·)). We call “the view of V” all inputs known by V (including the
random tape and the messages received by V). All other messages can be computed from
the view and the algorithm of V.

Results are stated in the framework of exact security, also know as concrete security [BR96,
BDJR97]. Exact security quantifies the adversary resources, e.g., the running time, the
number of oracle queries, etc. Then, it measures the success probability of the adversary as
a function of these resources. We denote any adversary bounded by a time complexity T
as a T -time adversary. Our main goal is to construct protocols that are secure against all
T -time adversaries. In particular, all security properties are formally specified by a game or
a game pair between an adversary A and a challenger C. For a single game G, the advantage
is defined by Adv(A) = Pr [GA = 1] where G = 1 indicates a successful attack. For a game
pair G0,G1, the advantage is defined by Adv(A) = |Pr [GA0 = 1]− Pr [GA1 = 1]|. Typically,
one requires that for all T -time adversaries A the advantage Adv(A) is upper bounded by ε.

3.2 Hash functions

Hash function is one of the most important primitives in cryptography. A hash function
H is usually used as compression function or as random function. It takes a message m of
arbitrary finite length as input and outputs a fixed-length digest h = H(m). We denote by
M the space of input messages and by H the space of output digests. In short, we have

H : M →H
m 7→ h = H(m) .

3.2.1 Collision Resistant Hash Functions

Collision Resistant Hash Functions (CRHF) are hash functions in which it is hard to con-
struct two different inputs which collide1. More precisely, given a CRHF H it is hard to find
two different input messages m1 and m2, m1 6= m2, such that H(m1) = H(m2). Clearly, an
adversary A against H is playing the CR game with a challenger C as depicted in Figure 3.1.

Definition 3.1 (Collision Resistance).
We say that H is (T, ε)-CR if any T -time adversary A wins the CR game of Figure 3.1
with probability at most ε.

This definition is nonsense mathematically. For simplicity, we will keep it as an informal
definition as we will not be using it so much. See Rogaway [Rog06] for more discussion.

1This definition is not so formal as discussed in Rogaway [Rog06].

34

Chapter 3 - Preliminaries

A C

m1‖m2−−−−−−−−→

A wins if H(m1) = H(m2), m1 6= m2.

Figure 3.1. The CR Game.

3.2.2 Weakly Collision Resistant Hash Functions

Weakly Collision Resistant Hash Functions (WCRHF) are hash functions in which, given
a message m, it is infeasible to produce a different message m̂, with m̂ 6= m, such that
H(m̂) = H(m) where H is a WCRHF. Weak collision resistance is also known as second
preimage resistance. Clearly, an adversary A against H is playing the WCR game with a
challenger C as depicted in Figure 3.2.

A C

m←−−−−−−−− pick m ∈uM
bm−−−−−−−−→

A wins if H(m̂) = H(m), m̂ 6= m.

Figure 3.2. The WCR Game.

Definition 3.2 (Weakly Collision Resistance).
We say that H is (T, ε)-WCR if any T -time adversary A wins the WCR game of Figure 3.2
with probability at most ε.

3.2.3 Keyed and Multi-Keyed Hash Functions

A keyed hash function H :M×K → H takes two arguments: a message of arbitrary finite
length m ∈M and a key k ∈ K, and outputs a fixed length digest h ∈ H:

H : M×K → H
(m,k) 7→ h = Hk(m)

Keyed hash functions are commonly used as building blocks in protocols. For example, two
participants who share a secret key k ∈u K can add a digest h to each exchanged message to
protect it from tampering. A potential adversary can carry out two types of attacks. First,
the adversary might try to impersonate a key holder by creating a valid (message, tag) pair

35

Sylvain Pasini

(m̂, ĥ) with no additional information. Secondly, the adversary might try to substitute a
message m by altering the corresponding pair (m,h). Security against impersonation and
substitution attacks depends on the regularity and the universality of the hash function as
defined below.

A keyed hash function is often referred to as a hash function family. The key is used
to select one function among the family. Hash function families were first introduced by
Carter and Wegman [CW79] under the name universal hash function family. Wegman
and Carter [WC81] defined strongly universal hash families. They also introduced almost
strongly universal hash families informally. Stinson [Sti91, Sti94] defined ε-almost universal
hash families and ε-almost strongly universal hash families. In the first case, ε denotes
a collision probability, while in the second case ε denotes a deception probability in the
corresponding unconditionally secure MAC. Krawczyk [Kra94] defined ε-otp-secure hash
families. They were renamed by Rogaway [Rog95] and they are today known as ε-almost
xor universal hash families.

The notion of keyed hash functions can be extended to hash functions with many sub-keys,
i.e., for

H :M×K1 × · · · × Kn →H .

In fact, the many sub-keys may be interpreted as a big key split in n parts.

Definition 3.3 (Almost Regular Hash Function).
A hash function H is said εar-almost regular if for any m ∈ M and any h ∈ H, we can
write:

Pr [k ∈u K : H(m,k) = h] ≤ εar .

A multi-keyed hash function H is said εar-almost regular with respect to the sub-key ki

if for any m ∈ M, any k̂1, . . . , k̂i−1, k̂i+1, . . . , k̂n ∈ K1 × · · · × Ki−1,Ki+1 × · · · × Kn, and
any h ∈ H, we can write:

Pr

[
ki ∈u Ki : H(m,~̂k) = h

]
≤ εar ,

where ~̂k denotes the vector (k̂1, . . . , k̂i−1, ki, k̂i+1, . . . , k̂n).

Definition 3.4 (Regular Hash Function).
A keyed or multi-keyed hash function H is regular if it is 1

|H| -almost regular.

Definition 3.5 (Almost Universal Hash Function).
A hash function H is said εau-almost universal, if for any two distinct inputs m0,m1 ∈M
we can write:

Pr [k ∈u K : H(m0, k) = H(m1, k)] ≤ εau .

36

Chapter 3 - Preliminaries

Assume K1 = K2 = . . . = Kn = K. A multi-keyed hash function H is εau-almost
universal with respect to the sub-key pairs, if for any two distinct inputs m0,m1 ∈ M,
any indexes i, j, and any k1, . . . , kn, k̂1, . . . , k̂n ∈ K, we can write:

Pr

[
k∗ ∈u K : H(m0, ~k) = H(m1, ~̂k)

]
≤ εau ,

where ~k = (k1, . . . , ki−1, k∗, ki+1, . . . , kn) and ~̂k = (k̂1, . . . , k̂j−1, k∗, k̂j+1, . . . , k̂n) and the
equality i = j is allowed.

Definition 3.6 (Universal Hash Function).
A keyed or multi-keyed hash function H is universal if it is 1

|H|-almost universal.

Definition 3.7 (Almost Strongly Universal Hash Function).
A hash function H is said εasu-almost strongly universal, if for any a, any b, and any two
distinct inputs m0,m1 ∈M, we can write:

Pr [k ∈u K : H(m0, k) = a,H(m1, k) = b] ≤ εasu
|H| .

Assume K1 = K2 = . . . = Kn = K. A multi-keyed hash function H is εasu-almost
strongly universal with respect to the sub-key pairs, if for any a, any b, any two distinct
inputs m0,m1 ∈M, any indexes i, j, and any k1, . . . , kn, k̂1, . . . , k̂n ∈ K, we can write:

Pr

[
k∗ ∈u K : H(m0, ~k) = a,H(m1, ~̂k) = b

]
≤ εasu
|H| ,

where ~k = (k1, . . . , ki−1, k∗, ki+1, . . . , kn) and ~̂k = (k̂1, . . . , k̂j−1, k∗, k̂j+1, . . . , k̂n) and the
equality i = j is allowed.

Definition 3.8 (Strongly Universal Hash Function).
A keyed or multi-keyed hash function H is strongly universal if it is 1

|H| -almost strongly
universal.

Definition 3.9 (Almost XOR-Universal Hash Function).
A hash function H is said εaxu-almost XOR-universal, if for any two distinct inputs
m0,m1 ∈M and any difference ∆h ∈ H, we can write:

Pr [k ∈u K : H(m0, k)⊕ H(m1, k) = ∆h] ≤ εaxu .

Assume K1 = K2 = . . . = Kn = K. A multi-keyed hash function H is εaxu-almost XOR-
universal with respect to the sub-key pairs, if for any two distinct inputs m0,m1 ∈ M,
any difference ∆h ∈ H, any indexes i, j, and any k1, . . . , kn, k̂1, . . . , k̂n ∈ K, we can write:

Pr

[
k∗ ∈u K : H(x0, ~k)⊕ H(x1, ~̂k) = ∆h

]
≤ εaxu ,

37

Sylvain Pasini

where ~k = (k1, . . . , ki−1, k∗, ki+1, . . . , kn) and ~̂k = (k̂1, . . . , k̂j−1, k∗, k̂j+1, . . . , k̂n) and the
equality i = j is allowed.

Definition 3.10 (XOR-Universal Hash Function).
A keyed or multi-keyed hash function H is XOR-universal if it is 1

|H| -almost XOR-universal.

3.2.4 Target Collision Resistant Hash Functions

Target Collision Resistant (TCR) hash functions were introduced by Naor and Yung [NY89].
They were renamed in [BR97] as Universal One-Way Hash Functions (UOWHF). In fact,
TCR hash functions are simply keyed hash functions with the universal property as in
Definition 3.6.

Here, we only redefine the security by a game as it will be used in a later section. In
short, by first choosing a message m, then given a key k, it is infeasible to find a different
message m̂ such that H(m̂, k) = H(m,k). Clearly, an adversary A against H is playing the
TCR game with a challenger C as depicted in Figure 3.3.

A C

m−−−−−−−−→
k←−−−−−−−− pick k ∈u K
bm−−−−−−−−→

A wins if H(m̂, k) = H(m,k), m̂ 6= m.

Figure 3.3. The TCR Game.

Definition 3.11 (Target Collision Resistance).
We say that H is (T, ε)-TCR if any T -time adversary A wins the TCR game of Figure 3.3
with probability at most ε.

3.2.5 Enhanced Target Collision Resistant Hash Function

Enhanced Target Collision Resistant (eTCR) hash functions were introduced by Halevi and
Krawczyk [HK06a]. eTCR resistance is a stronger notion than TCR resistance. The main
difference in the security games is the ability of the adversary to modify the key in the eTCR
game.

As TCR functions, an eTCR function is a collection of functions H(·, k) from a message
space M to a finite set H = {0, 1}ℓ which depends on a random parameter k picked from

38

Chapter 3 - Preliminaries

a set K. In short, by first choosing a message m, then given a key k, it is infeasible to
find a different message-key pair (m̂, k̂), i.e., (m̂, k̂) 6= (m,k), such that H(m̂, k̂) = H(m,k).
Clearly, an adversary A against H is playing the eTCR game with a challenger C as depicted
in Figure 3.4.

A C

m−−−−−−−−→
k←−−−−−−−− pick k ∈u K

bm‖bk−−−−−−−−→

A wins if H(m̂, k̂) = H(m,k), (m̂, k̂) 6= (m,k).

Figure 3.4. The eTCR Game.

Definition 3.12 (Enhanced Target Collision Resistance).
We say that H is (T, ε)-eTCR if any T -time adversary A wins the eTCR game of Figure 3.4
with probability at most ε.

We say that H is eTCR if any polynomially bounded adversary wins with negligible prob-
ability.

A OW-eTCR hash function is an eTCR hash function for which (m,k) 7→ H(m,k) is also
one-way (OW).

3.3 Random Oracle Model

The Random Oracle Model (ROM) consists of replacing hash functions by random ora-
cles. While random oracles are essential in many proofs, they do not perfectly model hash
functions. In Section 13.2, we will present a weaker model.

3.3.1 Random Oracle

A Random Oracle R : {0, 1}∗ 7→ {0, 1}n often represents a uniformly distributed random
function [BR93b].

It is simulated by an oracle managing a table T as follows:

• The table T is initially empty.

• When R receives a query with input m,

39

Sylvain Pasini

– if there is an entry (m, r) in the table T, then it simply returns r,

– otherwise, it picks a random value r ∈u {0, 1}n, inserts the entry (m, r) in the
table T, and returns r.

3.3.2 Pseudo-random Generator

A Pseudo-Random Generator (PRG) is an important primitive in cryptography. Given
a short sequence of (truly) random bits, a PRG allows to generate a longer sequence of
(pseudo)random bits in an efficient way. The short sequence of input random bits is often
called the seed.

Definition 3.13 (Pseudo-random Generator).
A pseudo-random generator is a deterministic algorithm

G : {0, 1}k → {0, 1}n

seed 7→ R = G(seed)

satisfying the following two conditions:

Efficiency: G is computable in polynomial-time.

Pseudo-randomness: The output R is computationally indistinguishable from an n-bit
uniformly distributed random variable.

The generator G is said (T, ℓ, ε)-PRG resistant if any T -time adversary A wins the
distinguishing game of Figure 3.5 with probability at most 1/2 + ε (or the advantage of A
is at most ε).

A C

pick b ∈u {0, 1}
for i : 1..ℓ:

select si
si−−−−−−−−→ if b = 0: ri ← G(si)
ri←−−−−−−−− if b = 1: ri ←u {0, 1}n

b̂ = guess(b)

A wins if b̂ = b.

Figure 3.5. The Distinguishing Game.

A concrete example of such a construction is the Blum-Blum-Shub (BBS) PRG [BBS86].
This generator is very secure, however it is not very efficient. We can also refer to QUAD

40

Chapter 3 - Preliminaries

recently proposed by Berbain, Gilbert, and Patarin [BGP06]. One advantage of QUAD
compared to BBS is its efficiency.

3.4 Common Reference String Model

Cryptographic schemes, like commitment schemes, are often defined with key pairs. While
these definitions are essential for proving the security of the overall protocol, they imply
some kind of “secure” transmission of the public-key to all participants.

In the Common Reference String (CRS) model, we assume all implementations to use the
same trusted public key known as the common reference string and denoted by crs. We
also believe that no corresponding secret key is kept by anyone. Note that the use of the
common public key can be “hard-coded” or can be an oracle access.

The CRS model is not so restrictive as it seems at first glance. All communication stan-
dards provide system wide public parameters such as specifications of hash functions, a group
generator, or the bit length of public keys. Therefore, one should make a trade-off between
computational efficiency and re-usability and size of system-wide parameters. Moreover,
there are theoretic constructions that allow generation of a crs in the standard model.

3.5 Commitment Schemes

As depicted in Figure 3.6, a commitment scheme can be seen as a “locked combination safe”:

When Alice wants to commit on a message m to Bob, she places m into the
“safe” and closes it (step 1). The safe is also the commitment object, denoted c,
and can be given to another party, i.e., to Bob (step 2). Obviously, the message
m cannot be known by other parties prior its opening, i.e., the “locked safe”
is “hiding” the message (step 3). In addition, the message cannot be modified
by Alice, i.e., the “locked safe” is “binding” (step 4). The message is revealed
only when the decommitment object, denoted by d, is revealed. Here, d is the
combination (step 5).

3.5.1 (Tag-less) Commitment Model

We can formalize a commitment scheme by two algorithms commit and open. For any
message m we have (c, d) ← commit(m). The c value is called the commit value and the d
value the decommit value. Knowing both c and d, the message can be recovered using the
open algorithm, i.e., m ← open(c, d). As a “locked safe”, a commitment scheme should be

41

Sylvain Pasini

Alice Bob

m

c

d
d

binding hiding

d
1

2

34

5

m

m̂

hiding

I know that
m is ...

m

Figure 3.6. A Combination Safe as Commitment Scheme.

hiding, meaning that for any c, it is hard to deduce any information about the corresponding
message m, and binding, meaning that one cannot find c,d,d′ such that (c, d) and (c, d′) open
to two different messages.

We also introduce keyed commitment schemes. They have a setup algorithm to generate a
key pair, i.e., (Kp,Ks)← setup(1λ). The public key Kp is used in commit and open oracles.
Note that Kp may be empty.

3.5.2 Tag-based Commitment Model

Tag-based commitment schemes are particular commitment schemes in which the input
message m is composed of two parts: a known part mt, called tag, and a hidden part mh.
Let k be the bit length of the hidden value mh. The setup algorithm is the same as for
tag-less commitments, but the two algorithms commit and open are redefined. Finally, the
three algorithms are defined as follows:

Setup. It yields a pair of keys (Kp,Ks)← setup(1λ).

Commit. For any key pair (Kp,Ks), any tag mt, and any value mh, we have (c, d) ←
commit(Kp,mt,mh).

42

Chapter 3 - Preliminaries

Open. Given Kp, c, d and the tag mt, the hidden value can be recovered with mh ←
open(Kp,mt, c, d).

Tag-less commitment schemes, in which the whole input message m is kept hidden, can
be constructed using a tag-based commitment scheme with an empty tag, i.e., mt =⊥,
and a hidden value equal to the conventional message, i.e., mh = m. We finally have
m = mt‖mh = mh.

3.5.3 Completeness, Hiding, and Binding Properties

We define here three of the most important properties for (tag-based) commitment schemes,
i.e., the completeness, the hiding and the binding properties.

Any commitment scheme must clearly satisfy the completeness property, i.e., a commit
value c and a decommit value d by the commit algorithm with input (mt,mh) should open
to mh. More formally, the completeness property is defined as follows.

Definition 3.14 (Completeness Property).
For any key pair (Kp,Ks) ← setup(1λ), any tag mt, any value mh, and any (c, d) ←
commit(Kp,mt,mh), we have mh = open(Kp,mt, c, d)

In addition, commitment schemes should be hiding, i.e., the commit value c should reveal
no information about the hidden value mh. More formally, the hiding property is defined as
follows.

Definition 3.15 (Hiding Property).
For any key pair (Kp,Ks) ← setup(1λ), any tag mt, any values mh,0,mh,1, any random
bit b, and any (c, d)← commit(Kp,mt,mh,b), c gives no information on b.

We defeat the hiding property with the semantic hiding (SH) game which is described in
Figure 3.7: the adversary A selects a tag mt and two hidden values mh,0 and mh,1 and sends
them to the challenger C. The challenger flips an unbiased coin b and commits to (mt,mh,b).
Given the commit value c, the adversary A guesses b and succeeds if the guess is correct.

Definition 3.16 (Semantic Hiding Commitment Scheme).
A scheme is said (T, εh)-semantically hiding if any T -time adversary A wins the SH game
of Figure 3.7 with probability at most 1

2 + εh.

We also can defeat the hiding property with the full hiding (FH) game which is described in
Figure 3.8. The adversary picks a tag mt and sends it to the challenger C. C picks a hidden
value mh ∈ {0, 1}k and commits on (mt,mh). C reveals the value c to A. Finally, A guesses
mh and wins the attack if the guess is correct.

43

Sylvain Pasini

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)

select mt,mh,0,mh,1
mt||mh,0||mh,1−−−−−−−−→

pick b ∈u {0, 1}
c←−−−−−−−− (c, d)← commit(Kp,mt,mh,b)

b̂← guess on b

A wins if b̂ = b.

Figure 3.7. The Semantic Hiding (SH) Game.

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)

select mt
mt−−−−−−−−→

pick mh ∈u {0, 1}k
c←−−−−−−−− (c, d)← commit(Kp,mt,mh)

m̂h ← guess on mh

A wins if m̂h = mh.

Figure 3.8. The Full Hiding (FH) Game.

44

Chapter 3 - Preliminaries

Definition 3.17 (Full Hiding Commitment Scheme).
Let k be the bit-length of the hidden value. A scheme is said (T, εh)-fully hiding if any

T -time adversary A wins the FH game of Figure 3.8 with probability at most 2−k + εh.

A commitment scheme is said perfectly (semantic or full) hiding if it is (∞, 0)-(semantic or
full)-hiding.

Here is a useful lemma taken from Vaudenay [Vau05b].

Lemma 3.18 (Semantic versus Full Hiding Properties).
There exists a (small) constant ν such that for any T and any εh, a (T+ν, εh)-semantically
hiding scheme is a (T, 2εh)-fully hiding commitment scheme.

Obviously, a (T + ν, εh)-fully hiding commitment scheme is also (T, εh)-semantically hiding.
Hence, the two notions of hiding commitment schemes are essentially equivalent.

In addition, commitments should be binding, i.e., an adversary which has committed to a
message mt‖mh by sending the commit value c cannot open to two different hidden values
mh,0 and mh,1. More formally, the binding property is defined as follows.

Definition 3.19 (Binding property.).
For any key pair (Kp,Ks)← setup(1λ), it is hard to find (mt, c, d0, d1) such that mh,b ←
open(Kp,mt, c, dB) 6= ⊥ for b = 0, 1 and mh,0 6= mh,1.

Clearly, the semantic binding (SB) game of Figure 3.9 must be hard.

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)

select mt, c, d0, d1
mt||c||d0||d1−−−−−−−−→ mh,0 ← open(Kp,mt, c, d0)

mh,1 ← open(Kp,mt, c, d1)

A wins if mh,0,mh,1 6=⊥ and mh,1 6= mh,0.

Figure 3.9. The Semantic Binding (SB) Game.

Definition 3.20 (Semantic Binding Commitment Scheme).
A scheme is said (T, εb)-semantically binding if any T -time adversary A wins the SB game
of Figure 3.9 with probability at most εb.

We can also define the full binding (FB) game. As described in Figure 3.10, it works as
follows: the adversary A selects a tag mt and a commit value c. Then, he sends both to the
challenger C. C picks a random value mh and sends it back to A. A proposes a decommit

value d and succeeds if it opens to mh, i.e., if mh
?
= open(Kp,mt, c, d).

45

Sylvain Pasini

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)

select mt,c
mt‖c−−−−−−−−→
mh←−−−−−−−− pick mh ∈u {0, 1}k

select d
d−−−−−−−−→ m̂h ← open(Kp,m, c, d)

A wins if m̂h = mh.

Figure 3.10. The Full Binding (FB) Game.

Definition 3.21 (Full Binding Commitment Scheme).
A scheme is said (T, εb)-fully binding if any T -time adversary A wins the FB game of

Figure 3.10 with probability at most 2−k + εb.

A commitment scheme is said perfectly (semantic or full) binding if it is (∞, 0)-(semantic
or full)-binding.

3.5.4 Non-Malleability

Non-malleability is the strongest property for commitment schemes. Indeed, the binding and
hiding properties directly follow from non-malleability but not vice versa. Many notions of
non-malleable commitments have been proposed in the cryptographic literature [DDN91,
DCIO98, FF00, DG03, LN06a]. All these definitions try to capture requirements that are
necessary to defeat man-in-the-middle attacks. Here, we adopt the modernized version of
non-malleability with respect to opening. The corresponding definition [LN06a] mimics the
framework of non-malleable encryption [BS99] and leads to more natural security proofs
compared to the simulation-based definitions [DCIO98, DG03].

For ciphers, non-malleability and security against chosen ciphertext attacks (CCA) are
known to be tightly coupled. In fact, these notions coincide if the adversary is allowed to
make decryption queries throughout the entire attack [BDPR97] and thus usage of decryp-
tion oracles can simplify many proofs without significantly increasing the security require-
ments. Unfortunately, a similar technique is not applicable to commitment schemes as there
can be several different valid decommitment values di for a single commitment c. Thus, one
must use explicit definitions of hiding, binding, and non-malleability properties in proofs.

The non-malleability property is defined by elaborated games. Thus we focus on tag-less
schemes and we use an illustrative pictorial style to specify these games, see Figure 3.11 and
Figure 3.12. Intuitively, the goal is: given a valid commitment c, it is infeasible to generate
related commitments ĉ1, . . . , ĉn that can be successfully opened after seeing a decommitment

46

Chapter 3 - Preliminaries

value d. More formally, the adversary A consists of two parts: A1 corresponds to the active
part of the adversary that tries to create and afterwards open commitments related to c;
A2 captures a desired target relation. Note that A1 is a stateful algorithm and can pass
information from one stage to the other but no information can be passed from A1 to A2

except some state σ. By convention, a game is ended with the output ⊥ if any operation
leads to ⊥.

A C

A1(Kp)

Kp←−−−−−−−−−
MGen−−−−−−−−−→

(Kp,Ks)← setup(1λ)
x0 ← MGen

A1(c)

c←−−−−−−−−−
σ,bc1,...,bcn−−−−−−−−−→

(c, d)←commit(Kp, x0)

Abort if ĉj = c

A1(d)
d←−−−−−−−−−

bd1,..., bdn−−−−−−−−−→ ŷj←open(Kp, ĉj , d̂j)

A2(·)
σ,x0 ,by1,...,byn←−−−−−−−−−

out−−−−−−−−−→ Return out

Figure 3.11. Non-malleability Game Gnm

0 .

A C

A1(Kp)

Kp←−−−−−−−−−
MGen−−−−−−−−−→

(Kp,Ks)← setup(1λ)
x0, x1 ← MGen

A1(c)

c←−−−−−−−−−
σ,bc1,...,bcn−−−−−−−−−→

(c, d)←commit(Kp, x0)

Abort if ĉj = c

A1(d)
d←−−−−−−−−−

bd1,..., bdn−−−−−−−−−→ ŷj←open(Kp, ĉj , d̂j)

A2(·)
σ,x1 ,by1,...,byn←−−−−−−−−−

out−−−−−−−−−→ Return out

Figure 3.12. Non-malleability Game Gnm

1 .

Figure 3.11 and Figure 3.12 can be interpreted as follows. In the game Gnm
0 , a challenger C

first generates the public parameter Kp. Given Kp, A1 outputs a message generator MGen.
Next, C selects x0 ← MGen and computes (c, d). Given c, A1 outputs some commitment
values ĉi and an advice σ forA2 and then, given d he generates some decommitment values d̂i.
Finally, C opens all commitments ŷi ← open(Kp, ĉi, d̂i) and tests whether A1 won or not by
computing A2(σ, x0, ŷ1, . . . , ŷn). The condition ĉj 6= c eliminates trivial attacks. The game
Gnm

1 is almost the same, except the challenger tests a relation A2(σ, x1, ŷ1, . . . , ŷn) instead,
where x1 ← MGen is chosen independently from the rest of the game. A commitment
scheme is (T, εnm)-non-malleable with respect to to opening if the advantage of any T -time

47

Sylvain Pasini

adversary A is at most

Advnm

Com(A) = |Pr [Gnm

0 = 1]− Pr [Gnm

1 = 1]| ≤ εnm .

Note that A2 can be any computable relation that is completely fixed after seeing c. For
instance, we can define A2(σ, x, y) outputs 1 if x = y and 0 otherwise. Hence, it must be
infeasible to construct a commitment ĉ that can be opened later to the same value as the
challenge commitment c.

Non-malleable commitment schemes can be built using a CCA2 secure public-key en-
cryption scheme. However, this method is too inefficient for lightweight devices. Efficient
non-malleable commitment schemes may be designed by using a hash function as detailed
by Laur and Nyberg [LN06a].

3.5.5 Ideal Commitment Model

The notion of ideal commitment model describes a scheme which is perfectly hiding and
perfectly binding.

For instance, an ideal commitment scheme can be implemented using a trusted third party
(TTP) as follows:
Commitment step. The commit(m) algorithm consists of sending the message m securely
to the TTP. The TTP binds m to a unique commit value c, inserts (c,m) in a database T

with a protection flag, and returns c to the owner. Note that there is no decommit value.
The protection flag avoids future access from anyone except the owner.
Opening step. The open(c) algorithm is a simple call to the TTP. The TTP clears the
protection flag of (c,m) which becomes available for anyone.

To commit on m, Alice first sends m to the TTP, gets back c, and then forwards c to Bob
as depicted in Figure 3.13. As depicted in Figure 3.14, to reveal the message Alice asks the

Alice Bob

TTP

commit(m)
c

pick c
store (c,m, protected) in T

A
���

TTP

c

Figure 3.13. Ideal Commitment: Commit Algorithm and Commitment Phase.

TTP to clear the protection flag. Now, Bob can open the commitment by giving c to the
TTP who sends back the message m (if the protection flag was cleared).

48

Chapter 3 - Preliminaries

Alice Bo

TTP

clear(c)

change flag to (c,m, unprotected)

Alice Bo

TTP

open(c)

m

Figure 3.14. Ideal Commitment, Decommit Algorithm and Decommitment Phase.

Ideal commitment can also be implemented by using the notion of universal compos-
able commitment schemes as proposed by Damg̊ard and Nielsen [DN02]. Canetti and Fis-
chlin [CF01] proposed a commitment scheme based on the CRS model which behaves like
an “ideal commitment service”.

3.5.6 Trapdoor Extractable Commitment Schemes

We define an extractable commitment scheme as an extension of a general tag-based com-
mitment scheme in which there is an additional deterministic algorithm: extract.

Extract. Given mt and c, the mh ← extract(Ks,mt, c) algorithm yields a mh value when-
ever there exists d which opens to mh, that is, mh ← open(Kp,mt, c, d).

Extractable commitments are perfectly binding since for a given mt and a given c, only
one mh can be yielded by the extract algorithm. Thus, there exists only one d and any
adversary has no advantage in the SB or FB games.

Adversaries playing the SH, FH, SB, or FB games may or may not have access to oracles.
They may query an extract(Ks, ·, ·) oracle, except on the target tag mt. (Note that they
have no access to Ks, but the oracle has.)

3.5.7 Trapdoor Equivocable Commitment Schemes

We define an equivocable commitment scheme as an extension of a tag-based commitment
scheme in which there are two additional oracles: simcommit and equivocate.

Simcommit. With input tag mt, the (c, ξ) ← simcommit(Ks,mt) algorithm yields a fake
commit value c and an additional information value ξ using the secret key Ks.

For any (Kp,Ks) ← setup(1λ), any mt, and any mh, the distribution of c should be
the same as the distribution of c generated by any commit(Kp,mt,mh) for any mh.

49

Sylvain Pasini

Equivocate. Using Ks, and with inputs (mt,mh, c, ξ) where c and ξ are outputs from
the simcommit algorithm, the equivocate algorithm yields a decommit value d ←
equivocate(Ks,mt,mh, c, ξ) such that (Kp,mt, c, d) opens to mh.

Access to simcommit and equivocate oracles is restricted depending on the application. The
normal usage of the commitment scheme should be limited to commit and open but we
stress that our security model assumes that the adversary may cheat on some commitments
by having access to simcommit and equivocate oracles. Indeed, our notion of equivocable
commitment relates to the notion of simulation-sound commitment [MY04].

Equivocable commitment schemes are perfectly hiding since a c can be generated before
and independently of the value mh. In the hiding game, the adversary has access to the
simcommit and equivocate but cannot query simcommit with the selected tag mt. Since the
commitment is perfectly hiding, no adversary can win the hiding game with a probability
larger than 2−k where k is the length of the message mh. In the binding game, the adversary
has access to the simcommit and equivocate oracles but cannot query simcommit with the
selected tag mt. We say that the equivocable commitment with k-bit values mh is (T, ε)-
secure if any T -time adversary wins in the FB game with probability at most 2−k + ε.

Secure equivocable commitment schemes can be easily constructed based on simulation-
sound trapdoor commitments by MacKenzie-Yang [MY04] as detailed in [Vau05b]. Con-
structions can be in the CRS model, e.g., based on the security of DSA signatures [DSS00]
or Cramer-Shoup signatures [CS02]. We can also build an efficient equivocable commitment
scheme in the ROM.

3.5.8 Trapdoor Commitment Model

Trapdoor commitment schemes were introduced by Brassard, Chaum, and Crépeau [BCC88].
We define (tag-less) (T, ε)-trapdoor commitment schemes by four algorithms setup, commit,
open, and equivocate. The first three algorithms work as before. The equivocate algorithm
defeats the binding property by using the secret key Ks.

There is no fake commitment algorithm. Indeed, the algorithm equivocate needs no ad-
ditional information except Ks. This primitive is a particular case of strongly equivocable
commitment as described by Damg̊ard and Groth [DG03].

More precisely, for any (Kp,Ks)← setup(1λ), a trapdoor commitment scheme is such that

Commitment properties. The algorithms setup, commit and open form a tag-less com-
mitment scheme which satisfies the completeness property, which is perfectly hiding,
and which is (T, ε)-binding.

50

Chapter 3 - Preliminaries

Trapdoor property. For any message m, the two distributions

(c, d)← commit(Kp,m) and (c ∈u C, d← equivocate(Ks,m, c))

are indistinguishable.

For instance, a trapdoor commitment based on the discrete logarithm problem was pro-
posed by Boyar and Kurtz [BKK90]. Another trapdoor commitment scheme was proposed
by Catalano et al. [CGHGN01] which is detailed in the next section.

Trapdoor commitment schemes are perfectly hiding and computationally binding com-
mitment schemes. Note that it is impossible to distinguish whether a committed value and
its corresponding decommit value, i.e., (c, d), have been yield by using the standard commit
algorithm or by choosing c uniformly and by using the equivocate algorithm.

In the Damg̊ard and Groth construction, adversaries can query equivocate(Ks, ·, ·, ·) oracle
(except on the selected c). In the Boyar and Kurtz and in the Catalano et al. constructions,
they cannot.

3.5.9 Examples

3.5.9.1 Extractable Random Oracle Commitment

Extractable commitment schemes can be designed from a random oracle R. Such schemes
were defined in Pass [Pas03]. Given any input d, R yields a value c ∈ {0, 1}ℓc , i.e., c← R(d).

Setup. There is no setup.

Commit. The commit(mt,mh) algorithm with mh ∈ {0, 1}ℓh picks a random value e ∈u

{0, 1}ℓe , builds d← mh‖e, and calls the random oracle c← R(mt‖d).

Open. The open(mt, c, d) algorithm checks that c
?
= R(mt‖d) and extracts mh from d.

Extract. An extract(mt, c) algorithm can be added. Indeed, when there was no collision
on the pairs (mt, c), the mh can be trivially extracted.

By allowing q queries to R, the scheme is (∞, q · 2−ℓe−ℓh)-binding with probability at least
1− q2 ·2−ℓc−1 [Vau05b]. In practice this scheme is pretty safe with ℓc = 2ℓe and ℓe = 80 (see
[Vau05b]) and the oracle R can typically be a hash function, e.g., SHA-1 [SHA93, SHA95].

51

Sylvain Pasini

3.5.9.2 Equivocable Random Oracle Commitment

A random oracle ROR can also be used to build equivocable commitment schemes. In that
case, queries are of the form c ← R(mt,mh, e) queried with a tag mt, an ℓh-bit string mh,
and an ℓe-bit string e. In short, it looks whether an entry (mt,mh, e, c) exists in the table
R. If not, the oracle creates the entry with a random ℓc-bit string c. In any case, the oracle
answers c.

Let ℓc, ℓe, and ℓh be three integers. The equivocable commitment works as follows:

Setup. There is no setup.

Commit. The algorithm (c, d) ← commit(mt,mh) simply picks e at random, queries c ←
R(mt,mh, e), sets d = (mh, e), and outputs (c, d) .

Open. The algorithm mh ← open(mt, c, d) simply checks that c
?
= R(mt, d) and extracts

mh from d.

Simcommit. (c, i) ← simcommit(mt) simply picks a random ℓc-bit string c and a nonce i
and stores (i, c,mt) in a table T.

Equivocate. d ← equivocate(i,mh) gets (i, c,mt) and removes it form the table T. The
oracle then picks a random ℓe-bit string e. If (mt,mh, e, ·) exists in the table R, the
oracle fails. Otherwise, it inserts (mt,mh, e, c) in H.

Clearly, if the number of oracle accesses to R and simcommit is limited by q, the
probability that the oracle fails at least once is less than q2/2 · 2−ℓe .

Unless equivocate fails, this scheme is clearly an equivocable commitment scheme as pre-
viously defined. Since all commit values c are generated in an independent way, there are no
collisions with probability at least 1−q2/2·2−ℓc . Clearly, being able to decommit any c to two
values would lead R to a collision. Hence, the scheme is

(
∞, 2−ℓh + q2 · 2−ℓe−1 + q2 · 2−ℓc−1

)
-

secure.

In practice, simcommit and equivocate are unused. So, we can just instantiate R by a
standard hash function, provided that an instantiation of that kind for a random oracle
makes sense [CGH98].

3.5.9.3 Paillier-based Trapdoor Commitment Scheme

A trapdoor commitment scheme was proposed by Catalano et al. [CGHGN01] based on the
Paillier’s trapdoor permutation [Pai99]. The proposed scheme is tag-less. It uses an RSA
modulus N = pq and a value h ∈ ZN2 such that its order is a multiple of N . The public key
is Kp ← (N,h) and the private key is Ks ← (p, q, h).

52

Chapter 3 - Preliminaries

The setup(1λ) algorithm outputs the two keys, Kp and Ks, as described previously.

The commit(Kp,m) algorithm of a message m ∈ ZN picks uniformly two random values
r, s and outputs c ← (1 +mN)rNhs mod N2 and d ← (r, s). Note that the commit value
c is uniformly distributed for any m since r and s are uniformly distributed and (r, s) 7→
rNhs mod N2 is the Paillier trapdoor permutation (see [Pai99]). We denote by Fh(r, s) this
permutation.

The open(Kp, c, d) algorithm yields m by solving c = (1 + mN)rNhs mod N2 from d =
(r, s) and Kp = (N,h).

The equivocate(Ks,m, ĉ) algorithm uses the collision-finding function, i.e., given a commit
ĉ and a message m, one can find d̂← (r̂, ŝ) such that ĉ = (1+mN)Fh(r̂, ŝ) mod N2 by using
the trapdoor on the Paillier permutation and knowing p, q, i.e., (r̂, ŝ)← F−1

h (ĉ(1+mN)−1).

Thus, given a ĉ, an adversary can find d̂ for any message m and thus defeat the binding
property.

3.5.9.4 Pedersen Commitment Scheme

An interesting and simple tag-less commitment scheme was proposed by Pedersen in [Ped91].

The setup phase consists in choosing two prime numbers p and q such that q divides
p − 1. Let Gq be the unique subgroup of order q of Z∗

p and let g be a generator of Gq. In
addition, the algorithm picks a random y ∈ Gq such that nobody knows logg(y). The public
parameters are (p, q, g, y). Note that the setup phase can be done by a trusted third party
(TTP).

The commit(Kp,m) algorithm with input message m ∈ Zq starts by picking a random
ℓ ∈ ZZq and then computes c← gmyℓ. The decommit value is simply d← (m, ℓ).

The open(Kp, c, d) algorithm extracts m and ℓ from d. Then it checks that c
?
= gmyℓ. If

the equality holds then it returns m otherwise it returns ⊥.

This scheme is perfectly hiding since yℓ is a random value and thus c reveals no information
about m. On the other hand, this scheme is computationally binding. Indeed, an adversary
able to win against the tag-less SB game proceeds as follows: he discloses some c, d, d′ such
that d = (m, ℓ), d′ = (m′, ℓ′), m 6= m′, and c = gmyℓ = gm′

yℓ′ . The secret parameter leaks
by logg(h) = m−m′

ℓ′−ℓ

Another vulnerability is its malleability. Indeed, an adversary who gets the commit value c
can commit to a relative message m̂ by committing on ĉ← c·gδ . When the adversary obtains
the decommit value d, i.e., (m, ℓ), he can compute its own decommit value d̂ ← (m+ δ, ℓ).
The verifier checks ĉ = gm+δhℓ. Thus, any adversary can commit on a related value to m,
e.g., m+ δ.

53

Sylvain Pasini

A trapdoor can easily be added to this commitment scheme. It simply consists in picking
a x ∈u Z∗

q and then letting y ← gx instead of choosing y randomly. Now, there is a public
key, i.e., Kp ← (p, q, g, y), and a private key, i.e., Ks ← x.

We have first to define the fake commitment algorithm commit. It consists in yielding
(c, ξ)← commit(m) where ξ ← (m, ℓ) for random m and ℓ and c← gmyℓ.

The equivocate algorithm with input m̂ yields d̂ which opens to m̂ using the fixed commit

value c. In fact, it has to find a ℓ̂ such that gmyℓ = g bmy
bℓ. This latter condition can be

written as m̂−m = (ℓ − ℓ̂) logg(y). Knowing the trapdoor, i.e., x = logg(h), an adversary

can find the corresponding ℓ̂, i.e., ℓ̂← ℓ− bm−m
x .

3.5.9.5 A Tag-based Equivocable Commitment Scheme

Here, we present a tag-based trapdoor commitment scheme introduced by MacKenzie and
Yang [MY04]. Their scheme is based on the Pedersen commitment scheme [Ped91] and on
the DSA signature scheme [DSS94, DSS00].

The setup(1λ) algorithm generates a DSA pair of keys (Kp,Ks), i.e.,

Kp = (g, p, q, y), Ks = x .

The commit(Kp,mt,mh) algorithm with mh ∈ Zq picks a random k and then computes g′

and h as follows:

k ∈u Zq , g′ ← gk mod p , h← gH(mt)yg′ mod p .

Note that (rDSA, sDSA) is a DSA signature of m where rDSA = g′ mod q and sDSA =

logg′(h), i.e., sDSA = H(mt)+xrDSA

k .

Then, it uses the Pedersen commitment scheme to commit on mh using (g′, h) as public
parameters, i.e., it picks ℓ and computes c′ as follows:

ℓ ∈ Zq , c′ ←
(
g′

)ℓ
hmh mod p .

Finally, the commit value c and the decommit value d are the followings:

c← (g′, c′) , d← (mh, ℓ) .

The open(Kp,mt, c, d) algorithm computes h as follows:

h← gH(mt)yg′ mod p .

54

Chapter 3 - Preliminaries

Then, it checks that

c′
?
=

(
g′

)ℓ
hmh (mod p)

and if the condition is verified it outputs mh, otherwise it outputs ⊥.

These three algorithms form a commitment scheme. In addition, there is a commit(Ks,mt)
algorithm which uses the secret key Ks to yield a fake commit value and additional infor-
mation which are required by the equivocate algorithm.

The commit(Ks,mt) algorithm computes a DSA signature σDSA ← (rDSA, sDSA) on mt

by using the secret key Ks, i.e.,

k ∈ Z∗
q , rDSA ← gk mod p mod q , sDSA ←

H(mt) + xrDSA

k
mod q .

Then, it computes g′ and h as

h← gH(mt)yrDSA mod p , g′ ← hs−1
DSA mod p

and picks ℓ and computes c′ as

ℓ ∈ Zq , c′ ← hℓ mod p .

Finally, the fake commit value ĉ and the auxiliary information ξ are

ĉ← (g′, c′) , ξ ← (ℓ, sDSA) .

Note that g′ is in fact equal to gk mod p.

The equivocate(Ks,mt, m̂h, ĉ, ξ) algorithm outputs a fake decommit value d̂ such that
open(Kp,mt, ĉ, d̂) yields m̂h. Thus, it must find a d̂, i.e., a ℓ̂ (since m̂h is given), such that

c′ = (g′)
bℓhbmh (mod p)

which can be written as

c′ = (g′)
bℓg bmhH(mt)y bmhg′ (mod p) .

But, we know that y = gx mod p and g′ = gk mod p and we obtain

c′ = gkbℓ+ bmhH(mt)+x bmhg′ (mod p) .

In reality, the c′ value yielded by the commit algorithm is

c′ = hℓ = gH(mt)ℓ+xrDSAℓ (mod p) .

Recall from DSA that g is of order q. Thus, we can deduce that

kℓ̂+ m̂hH(mt) + xm̂hg
′ = H(mt)ℓ+ xrDSAℓ (mod q) .

55

Sylvain Pasini

Note that rDSA = g′ mod q. We have

ℓ̂ = (ℓ− m̂h)
H(mt) + xrDSA

k
(mod q) .

Consequently, we obtain

ℓ̂ = (ℓ− m̂h)sDSA (mod q)

and this is the reason why ℓ and sDSA are in the extra information ξ.

Note that this scheme has a stronger binding property called simulation sound binding
property which guarantees that a commitment made by an adversary with tag mt is binding
even if he saw many simulated commit values but never a commitment with mt. It is showed
in [MY04] that if an adversary can break this property then it can also break DSA.

3.6 Entropies

We provide the necessary quantitative definitions of the entropy of a random variable.

Definition 3.22 (Min-Entropy).
Let X a random variable in a set X with distribution D. We define the min-entropy of
X by

H∞(D) = − log max
x∈DX

Pr[X = x] .

Definition 3.23 (Renyi Entropy).
Let X a random variable in a set X with distribution D. We define the Renyi entropy (of
order 2) of X by

H2(D) = − log
∑

x∈DX

Pr[X = x]2 .

3.7 Collisions on the Outputs of a Random Oracle

Mironov [Mir06] computed the probability of collision on the outputs of a random oracle R.

Lemma 3.24 (Collisions on R outputs).
Let R denotes a set of possible rj values with cardinality q. We consider ℓ i.i.d. trials ri
with distribution D. Let εc be the probability that at least one of the trials is in R or at
least two of the trials are equal. We have

εc ≤ 2−2·H∞(D) · ℓ2 · q + 2−H∞(D) · ℓ2 . (3.1)

56

Chapter 3 - Preliminaries

Note that we can use another bound for εc in terms of Renyi entropy as described in
Lemma 3.25 or as pseudo-randomness as described in Lemma 3.26.

Lemma 3.25 (Collisions on R outputs with respect to Renyi entropy).
Let R denotes a set of possible rj values with cardinality q. We consider ℓ i.i.d. trials ri
with distribution D. Let εc be the probability that at least one of the trials is in R or at
least two of the trials are equal. We have

εc ≤
ℓ2

2
· 2−H2(D) + ℓ · √q · 2−

H2(D)
2 . (3.2)

Proof.
Let px = Pr[r = x]. We have

εc = Pr[∃i, j : i 6= j, ri = rj or ri ∈ R]

≤ ℓ2

2

∑

x

p2
x + ℓ

∑

x∈R

px ≤
ℓ2

2

∑

x

p2
x + ℓ

√
q

√∑

x

p2
x .

Lemma 3.26 (Collisions on R outputs with respect to a PRG).
Let R denotes a set of possible rj values with cardinality q. We consider ℓ i.i.d. trials ri
with distribution D. Let εc be the probability that at least one of the trials is in R or at
least two of the trials are equal. Assuming that D is (ℓ, ε)-PR in {0, 1}ρ, we have

εc ≤ q · 2−ρ +
ℓ2

2
· 2−ρ + ε . (3.3)

57

Sylvain Pasini

58

Part I

SAS-based Message Authentication
and Key Agreement Protocols

59

Chapter

FOUR

Security Model

This chapter presents the security model for (message authentication) protocols relying on
an extra authenticated channel. We first define the network setting (nodes, identities, and
protocol instances) and the communication model (the available channels). Then, we define
the adversary capabilities on the network, on the insecure channel, and finally on the extra
authenticated channel. Finally, we present the concept of short authenticated string (SAS).

4.1 Network Model

We define a model for a communication network made up of devices and different commu-
nication channels between them. Here, the term “device” is a generic name to describe any
communication entity. For instance, a device may be a personal computer, a mobile phone,
a satellite, or a television.

Nodes and Unique Identities. We consider a network composed of N communication
devices. Each device is located on a node n and each node is given a unique identity idn.
For instance, identities may be interpreted as network addresses. The communication
device located on node n, of identity idn, is denoted by Pidn .

Key Database. Each node n locally maintains a database of (skj , idj) pairs. A pair means
that it can use the symmetric key skj to communicate securely with the node of
identity idj.

61

Sylvain Pasini

A Protocol Run. A protocol π specifies a sequence of steps which consist of receiving a
message and sending a response. The N participants of the network are potentially
involved in the protocol execution. An internal short-term state σ keeps track on
previously completed steps. Once the protocol is completed, σ is removed. A protocol
starts with some specified inputs and an initial state (in terms of database content). It
ends with some specified outputs (or an error message) and a final state. The difference
between the inputs and outputs with respect to the initial and final states is that the
adversary has control over the first ones but not on the states, except if the node was
corrupted or some information leaked.

Concurrent Protocol Instances. A node n can run concurrent instances of the same or
different protocols. Each instance of a protocol π is formally denoted by a unique
instance tag π(i)

n . Note that the (internal) state of a protocol related to a given tag
changes with time as new steps of the protocol are made.

Group Descriptions. Let π be a protocol specifying the interaction between the partic-
ipants Pid1 , . . . ,Pidn . The participants form a group which may be small, e.g., two
parties (n = 2), or much larger. We denote by G = {id1, . . . , idn} the group of partic-
ipants involved in the protocol. We always assume that the group G is ordered with
respect to the sender identities id1 < id2 < · · · < idn. We may use H to refer to the
group of honest (non-corrupted) participants. Clearly, we always have H ⊆ G.

4.2 Communication Model

It is often prohibitively expensive to establish physical infrastructure that guarantees in-
tegrity of received messages. Authenticity concerns are particularly justified in case of
wireless communication, since anybody with the proper equipment can eavesdrop, inject
messages and cause communication failures. Thus, we have to assume that participants ex-
change messages over a communication network that is controlled by a malicious adversary.

However, the latter does not exclude the possibility of truly authentic message transmis-
sion, since participants may use alternative ways to communicate. For instance, in many
small-range wireless networks a human operator can authentically transfer short messages
from one device to another. If entities are further apart, we can transfer such messages over
the phone provided that the participants can recognize each other by voice and behavior.

As usual, we consider a model where communication is asynchronous. Nodes can use
in-band and out-of-band communication channels:

In-band communication. The in-band communication channel is totally insecure. It is
routed via an active adversary A who can eavesdrop, delay, modify, drop, and insert
messages. More details about the adversary capabilities are given in Section 4.3.

62

Part I Chapter 4 - Security Model

Out-of-band communication. Additionally, nodes are able to send out-of-band messages
through an authenticated extra channel. More details on that channel are given in
Section 4.4.

Figure 4.1 describes a network with three nodes, where each node can send insecure messages
as well as authenticated messages to each other.

Node 1 Node 2

Adversary

Node 3

A-I

A
-I A

-I

Figure 4.1. Communication Channels (Example with Three Participants).

We emphasize that there are no true broadcast channels in our model. Although several
wireless networks such as WLAN in ad-hoc mode offer physical broadcast channels, there
are no guarantees that the signal actually reaches all nodes. If we can guarantee this by
physical means, then the authentication task becomes almost trivial. As different recipients
can receive different broadcast messages, there is no difference between broadcasting and
standard messaging except for efficiency. Similarly, broadcasting authenticated messages
does not change the security analysis, although in practice, broadcasting can significantly
reduce the necessary human interaction and make the protocol more user-friendly. For
instance, a user entering the same PIN on each mobile device in a Bluetooth piconet is
certainly less demanding than using different PIN values. The same is true if we consider
secure VoIP-based conference calls: a participant giving the same value to all others has
much less work than a participant giving a different value to each other.

Note that in some cases, a participant, say Alice, may only send messages without really
interacting with any other party. As well, the other parties only receive messages from Alice.
In that case, both communication channels are only used in one-way. Such a protocol using
one-way channels is said non-interactive.

Definition 4.1 (Non-interactive Protocol).
A protocol is said to be non-interactive if all protocol messages are sent from one node
only, e.g., from Alice to the others.

63

Sylvain Pasini

4.3 Adversarial Model

We adapt different adversarial models from Laur, Pasini and Vaudenay [Vau05b, Vau05a,
PV06a, PV06b, LP08, LP09]. All these adversarial models are based on the one from Bellare-
Rogaway [BR93a] which places the adversary at the center of the network. The adversary
can make queries to any instances on any nodes. By default, the adversary is assumed to
have full control over

• the insecure channel,

• the protocol inputs,

• which node launches a new protocol instance,

• which instance makes a new protocol step.

The adversary is also able

• to access the protocol outputs,

• to influence the delivery of messages (without modifying them) over the authenticated
channels.

Occasionally, the adversary may

• violate the privacy of the internal state of a given node,

• corrupt a node so that its behavior with respect to future protocol runs is no longer
guaranteed.

We assume that the actions of the participants, including potential adversaries, only depend
on the received messages and their relative ordering. This assumption is often justified
even if a practical instantiation of a protocol depends on explicit timings. In fact, it is
straightforward to prove that security guarantees obtained in this simplified model are valid
for all practical settings, where exact timings do not depend on the states of private variables.

More formally, the adversary has access to the following oracles:

Launch. The π(i)
n ← launch(n, r, x) oracle launches a new protocol instance on node n

playing the role r with input x. The role r describes a character, i.e., a role to play in
the protocol. It can be for instance Alice or Bob. This launch oracle returns a unique
instance tag π(i)

n . Since a node can run concurrent protocols, there may be several
instances related to the same node n. Note that the instance inherits the current node
state as input state.

64

Part I Chapter 4 - Security Model

Execute. The ξ ← execute({j ∈ [1, n] : π
(ij)

j }) oracle runs the full protocol with the given n

protocol instances π
(i1)

1 , π
(i2)

2 , . . . π(in)
n on nodes 1, 2, . . . , n and returns the full transcript

of protocol messages and the protocol outputs. This oracle models passive attacks.

Send. The m′ ← send(π(i)
n ,m) oracle sends an incoming message m to the instance π(i)

n . It
returns either an outgoing message m′ which is meant to be sent to another participant,
or the the final output of the protocol if it completed. This models active attacks.

For example, assume a protocol π with two characters, Alice and Bob executed in presence
of an adversary A. Let the character Alice be played on node A with input xA and the
character Bob be played on node B with input xB . A possible protocol execution is de-
picted in Figure 4.2 in two different ways: an adversary query list and a schematic message
representation.

1. π(1)

A ← launch(A,Alice, xA)

2. π(1)

B ← launch(B,Bob, xB)

3. m1 ← send(π(1)

A , ∅)
4. m2 ← send(π(1)

B , m̂1)

5. m3 ← send(π(1)

A , m̂2)

6. ...

≡

A A B

launch(Alice,xA)←−−−−−−−−−− launch(Bob,xB)−−−−−−−−−−→
π

(1)
A−−−−−−−−−−→ π

(1)
B←−−−−−−−−−−

send(π
(1)
A

,∅)←−−−−−−−−−−
m1−−−−−−−−−−→ send(π

(1)
B , bm1)−−−−−−−−−−→

send(π
(1)
A , bm2)←−−−−−−−−−− m2←−−−−−−−−−−

.
until a message is a termination message.

Figure 4.2. Example of Oracle Queries for a Protocol Execution.

Notation. By convention, we describe protocols by putting a hat (·̂) on the notation for
messages received by a node (i.e., inputs of the send oracle) which are not authenticated
since they can differ from messages which were sent (i.e., outputs of the send oracle)
in the case of an active attack. For instance, it is the case for m1 and m̂1 as well as
for m2 and m̂2 in Figure 4.2.

We may give to the adversary also access to the oracle m← receive(π(i)
n). However, this can

be trivially emulated by a m← send(π(i)
n , ∅). The existence of the receive oracle makes sense

only when we are using a non-interactive protocol. Indeed, a non-interactive protocol only
uses one-way channels. So, it may seem strange to allow the adversary to ask for receiving
a message with the m ← send(π(i)

n , ∅) oracle, i.e., sending an empty message, because this
may mean that the channels may be bidirectional.

65

Sylvain Pasini

Note that the Bellare-Rogaway [BR93a] model considers additional oracles specific to
protocols using long-term secrets, like key agreements for instance:

Remove. The remove(n, id) oracle removes any (sk, id) entry in the database of node n.
In practice, this oracle may be implemented by an adversary making denial-of-service
attacks in the communication link between n and id so that n decides not to trust this
connection anymore and to remove it.

Reveal. The sk ← reveal(π(i)
n) oracle reveals the session key sk to the adversary A if the

instance π(i)
n have accepted them before. This query models the loss of the session key

and can be used to show the consequences on the other instances.

Corrupt. The corrupt(n) oracle corrupts the collection of instances related to the node n.
So the behavior of any protocol instance at node n is no longer guaranteed. This query
models the corruption of a node (all instances), for example a user-password pair has
been stolen or a malicious code has been installed on the device on node n, e.g., with
a “Trojan horse”.

Test. The b ← test(n, sk, id) tells whether (sk, id) is an entry of the database of node n
(b = 1) or not (b = 0). In practice, this oracle may be implemented by an active
adversary trying to impersonate node n to communicate with id. If the attempt
succeeds, it means that sk was correct.

Definition 4.2 (Attack Cost.).
The attack cost is measured by

• q, the number of launched instances of the different roles, i.e., the online complexity,

• T , the additional time complexity, i.e., the offline complexity,

• p, the probability of success.

4.4 Authenticated Channel Models

When referring to “channel”, we refer by default to an insecure broadband channel with
no additional assumption. As mentioned before, the devices of the network can use extra
authenticated channels.

An authenticated channel is related to a node identity id. Formally, an authenticated
channel from a node n has an identifier idn. It allows the recipient of a message to know
the identity of the node from which the message has been sent. Note that an adversary
cannot modify it (i.e., integrity is implicitly protected), but she can delay it, remove it,
replay it, and of course read it. In particular, an authenticated channel does not provide
confidentiality.

66

Part I Chapter 4 - Security Model

By convention, we note authidn(m) a message m which has been sent from node n through
the authenticated channel.

The send oracle maintains unordered sets of authenticated messages in every channel idn

from node n. Only send oracles with a π(i)
n instance can insert a new message in this set.

When a send oracle is queried with any instance and any message authidn(m), it is accepted
by the oracle only if m is in the set related to channel idn. Note that concurrent or successive
instances related to the same node write in the same channel, i.e., in the same set. Thus,
when an instance π(i)

n sends a message, the recipient of this message can only authenticate
the node from which it has been sent, i.e., n, but not the connection to the right instance,
i.e., i.

For simplicity, we assume that the input or output to the send oracle are either authenti-
cated or non-authenticated messages, but not both. Namely, protocols do not concatenate
authenticated and non-authenticated messages.

4.4.1 Weak Authenticated Channels

By default, authenticated channels with no other assumption than authentication and in-
tegrity are called weak. This means that an adversary can delay, remove, or replay a message.
In particular, the sender of the message has no assurance on the message delivery.

4.4.2 Stronger Authenticated Channels

In some cases we need special assumptions on the authenticated channel. Thus, we can
consider stronger authenticated channels, namely channels in which additional properties
are achieved. In the following, we propose some possible properties that can be assumed on
a stronger authentication channel.

Stall-free transmission assumes that when a message is released by a send oracle, either
it is used as input in the just following send oracle query (either authenticated or not)
or it is never used.

Transmission with acknowledgment assumes that messages are released with a desti-
nation node identifier and the sender can check whether an instance at the destination
node has received the message or not.

Listener-ready transmission assumes that the sender can check if an instance at the
destination node is currently ready to listen to the authenticated channel.

Transmission with immediate delivery assumes that an input message of a send oracle
is immediately delivered to the recipient.

67

Sylvain Pasini

4.4.3 Examples

As mentionned in Section 2.2, human beings can use different channels to communicate.
However, not all achieve authentication.

A face-to-face conversation (encounter) and a telephone call ensure authenticity. In
addition to this, these channels achieve some of the above stronger properties. Suppose two
persons want to start communicating. When the first person starts talking, he knows that
the second one is listening (listener-ready). When one talks to the other one, he knows that
the message is not a replay of a previous conversation since interactivity implies coherent
conversations (stall-free). Humans can also sense if the other one has listened to the message
(acknowledgment). Finally, in face to face conversation, spoken words will be immediately
heard by the other (immediate delivery). However, by telephone, this is not the case. Indeed,
there may be delays, crosstalks, and concurrent talks (collisions of voices).

A (postal) mail can be stalled and released in a different order. The sender has no
confirmation in general that the mail has been received (except using a registered mail).
Finally, the recipient may not be ready to receive it. Thus, a mail achieves none of the
strong properties. A registered mail (reg. mail) only adds an acknowledgment.

A voice mail (or voice record) achieves none of the stronger properties since the message
could be a recorded one, the recorder has no confirmation that the destination heard it, and
the recipient is in general not ready to listen.

An electronic mail (email) is the worst channel in term of security since it has none of
these properties. In particular,note that an email with no cryptographic appendix, such as
a GPG signature for instance, is in fact not an authenticated channel since it can easily be
forged.

It is clear that mail, electronic mail and voice record are not delivered immediately.

Interactive Non-interactive
Encounter Telephone Reg. mail Mail Voice mail Email

Authentication , , , , ,

Stall-free , ,

Acknowledgment , , ,

Listener-ready , ,

Immediate delivery ,

Strong / Weak Strong Strong Strong Weak Weak -

Figure 4.3. Stronger Properties on the Extra Channels used by Human Beings.

There also exist other channels that enable the transfer of a string from one device to
another in an authenticated way. The user still plays an important role. He has in possession

68

Part I Chapter 4 - Security Model

the devices, no adversary can access it physically, and so authentication is ensured.

Indeed, a user can copy a string from one device to the other. No adversary is able to
alter the transferred string, so authentication and integrity is ensured. This channel is also
stall-free since no adversary is able to avoid the delivery of the message and no adversary
is able to replay an old message. The user is invited to enter the message in the second
device, so this kind of channel is listener-ready. It does not achieve immediate delivery since
it is not possible to force the user to type the message. Also, by default, the source has no
acknowledgement, but if required we can force the user to acknowledge.

The user load can be limited in the case that both devices display the message to be
authenticated. In that case, the user only needs to compare them and accept, resp. reject,
if they are equal, resp. different. We call such a channel string comparison and it ensures
basically the same properties as the string copy channel.

String copy String comparison

Authentication , ,

Stall-free , ,

Acknowledgment
Listener-ready , ,

Immediate delivery

Strong / Weak Strong Strong

Figure 4.4. Stronger Properties on User-aided Extra Channels.

4.4.4 SAS-based Cryptography

Vaudenay [Vau05b] introduced the notion of Short Authenticated String (SAS). Usually,
there is a trade-off between the security and the amount of authenticated communication.
For many practical applications, the SAS message consists of 6 decimal digits and thus an
adversary can succeed a trivial deception attack with probability 10−6. On the other hand,
10−6 is also the probability of not noticing an active attack. The latter is small enough to
demotivate most of the possible attackers. Of course, the cryptographic security levels can be
achieved only with sufficiently long SAS messages. Therefore, it is important to minimize (or
optimize) the amount of manually authenticated communication. So, as mentioned before,
the extra authenticated channel is modeled as an expensive channel and consequently the
authenticated messages should be as short as possible.

69

Sylvain Pasini

70

Chapter

FIVE

On the Optimal Entropy

of Authenticated Communication

In this chapter, we would like to upper bound the security of an arbitrary SAS-based message
authentication protocol π given the overall length of authenticated strings it uses. In other
words, if we fix the number of authenticated bits to k, then the question is what is the
strongest achievable security? To answer that question, in this chapter we propose generic
attacks against such kinds of protocols. Note that we focus in two-party protocols. Since
there exists no protocol resistant to these generic attacks we conclude that it is the strongest
achievable security. Any protocol reaching this security level would be optimal.

Generic Unilateral Message Authentication Protocol. Assume that the protocol is used to
authenticate a message m from Alice to Bob. For that reason, we assume that authenticated
messages are only sent by Alice. We consider the more general case by supposing that the
protocol can use any sequence of authenticated messages in a given set S during the protocol.
We call it a transcript. Note that authenticated strings may be interleaved with regular
messages which are not represented in the transcript since they may be easily forged by an
adversary. For any input message m, the authenticated transcript used during a protocol
run is denoted by SASm and it is picked with a distribution Dm in the set S of all possible
transcripts.

71

Sylvain Pasini

One-shot Adversaries. First, we analyze the security against adversaries which can only
use one instance of Alice and one instance of Bob. We call them one-shot adversaries.

Multi-shot Adversaries. Second, we consider adversaries which can launch many instances
of Alice and Bob. We call them multi-shot adversaries. Over a weak authenticated channel,
adversaries can delay or replay authenticated messages. With protocols using a k-bit SAS,
we may have the following attacks.

Delay attack. An attacker starts a protocol with Alice to recover one authenticated string.
Then, the attacker launches several (online) protocols with Bob until the expected au-
thenticated string by Bob matches the one recovered before from Alice. The adversary
delivers the authenticated string of Alice to this instance of Bob.

Catalog attack. Similarly, an adversary launches several instances of Alice, recovers many
authenticated strings, and builds a catalog of authenticated strings. Then, the adver-
sary starts a protocol with Bob and (if possible) uses one of the recovered authenticated
string from Alice. This attack works when the SAS catalog is close to the complete
one.

Trade-off attack. We can further trade the number of Bob’s instances against the number
of Alice’s instances and have a birthday paradox effect.

Note that the first two attacks work within a number of trials around 2k but the third one
needs only around 2k/2 trials.

5.1 Probability of Collision Between Random Variables

In any attack, i.e., one-shot, delay, catalog, or trade-off attack, we need to study the prob-
ability that two authenticated strings collide.

We will see later that the one-shot attack is successful if the two authenticated transcripts
SASAlice and SASBob match. By considering the SAS values as independent and identically
distributed (i.i.d.) random variables, it is interesting to know the probability of collision
between them. In order to build secure protocols, we also need to know when this probability
of collision is minimal.

Lemma 5.1 (Collision Between Two Independent Random Variables).
Let X and Y be two independent and identically distributed random variables with distri-
bution D over a support set S of n elements, i.e., |S| = n. We have

Pr[X = Y] = 2H2(D) ≥ 1

n
and Pr[X = Y |D is uniform] =

1

n
. (5.1)

72

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

Thanks to Lemma 5.1, we know the probability of collision between two random variables
and we know that this probability is minimal when the distribution is uniform.

Proof.
Let n be the size of the set S. Since X and Y are i.i.d. we have

Pr[X = Y] =
∑

si∈S

Pr[X = si] · Pr[Y = si] =
∑

si∈S

p2
i

where pi denotes Pr[X = si]. Note that the above line leads to Pr[X = Y] = 2H2(D) where
H2(·) denotes the Renyi entropy as in Definition 3.23.
Now, let us write pi = 1

n + ρi, we obtain

Pr[X = Y] =
∑

si∈S

p2
i =

∑

si∈S

(
1

n
+ ρi

)2

=
∑

si∈S

(
1

n

)2

+ 2
∑

si∈S

1

n
ρi +

∑

si∈S

ρ2
i .

Note that
∑

si∈S
pi =

∑
si∈S

1
n +

∑
si∈S

ρi = 1 and so we deduce that
∑

si∈S
ρi = 0. We

finally obtain

Pr[X = Y] =
1

n
+

∑

si∈S

ρ2
i .

Clearly,
∑

si∈S
ρ2

i is positive.
∑

si∈S
ρ2

i = 0 when all ρi are null, i.e., when the distribution
D is uniform, and

∑
si∈S

ρ2
i > 0 when the distribution D is non-uniform.

Later, we will also see that a multi-shot attack tries to find a collision between two sets of
SAS values. In order to build secure protocols, we also need to know when this probability
of collision between these sets is minimal.

Lemma 5.2 (SAS Values Should Belong to the Uniform Distribution).
We consider two sets of independent random values {Xi}, resp. {Yj}, of size p, resp. q,
where the elements are picked in a set S of size n with distribution D.

The probability of collision between the two sets is minimal when the distribution D is
uniform.

Assuming that the attacks really look for collision between random SAS values, any au-
thentication protocol must use uniformly distributed SAS values in order to minimize the
attacks. Indeed, any other distribution will allow the adversary to find collisions with a
higher probability or a smaller complexity. So, the protocol will be less secure.

Proof.
Let Cp,q

D be the probability that there exists a Xi which corresponds to a Yj given a distri-
bution D along the set S of n elements, i.e., a collision occurred between the two sets:

Cp,q
D = Pr [{X1, · · · ,Xp} ∩ {Y1, · · · , Yq} 6= ∅] .

73

Sylvain Pasini

Formally, we have to prove that
Cp,q
D ≥ Cp,q

Un
(5.2)

where Un is the uniform distribution among a set of n possible elements.

We will proceed by first proving that Equation (5.2) is true for a support S of one element,
i.e., when n = 1. Then, we will prove by recurrence that Equation (5.2) is true for any n,
i.e., by proving that it is true for n elements assuming that it is true for n− 1 elements.

For a set S of one element, i.e., n = 1, the result is straightforward since the only pos-
sible distribution is the uniform distribution and we have Cp,q

D = Cp,q
U1

.

For a set S of any size n, we will prove that it is also true by assuming that Equa-
tion (5.2) is true for n− 1 or less elements.

Let a be an elements of S and pa its probability, i.e., pa = PrD[X = a]. We define a
new distribution D′ by considering D in which a never occurs, i.e.,

Pr
D′

[X = x] =

{
0 if x = a
PrD[X = x|x 6= a] if x 6= a

.

Considering the particular element a, we apply the total probability theorem, and we
can write

Cp,q
D = Pr

[
{Xi} ∩ {Yj} 6= ∅

∣∣a /∈ {Xi}, a /∈ {Yj}
]

·Pr[a /∈ {Xi}, a /∈ {Yj}]
+ Pr

[
{Xi} ∩ {Yj} 6= ∅

∣∣a ∈ {Xi}, a ∈ {Yj}
]

·Pr[a ∈ {Xi}, a ∈ {Yj}]
+ Pr

[
{Xi} ∩ {Yj} 6= ∅

∣∣a ∈ {Xi}, a /∈ {Yj}
]

·Pr[a ∈ {Xi}, a /∈ {Yj}]
+ Pr

[
{Yi} ∩ {Yj} 6= ∅

∣∣a /∈ {Xi}, a ∈ {Yj}
]

·Pr[a /∈ {Xi}, a ∈ {Yj}]

which can be written as

Cp,q
D = Cp,q

D′ · (1− pa)
p(1− pa)

q

+1 · [1− (1− pa)
p][1− (1− pa)

q]

+

p∑

i=1

{
Cp−i,q
D′

(
p

i

)
pi

a(1− pa)
p−i

}

·[1− (1− pa)
p](1− pa)

q

+

q∑

i=1

{
Cp,q−i
D′

(
q

i

)
pi

a(1− pa)
q−i

}

·(1− pa)
p[1− (1− pa)

q] .

74

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

By noting that D′ is distributed over n − 1 elements only (since a never occurs) and
assuming that Equation 5.2 is true for n− 1 elements, we can write

Cp,q
D′ ≥ Cp,q

Un−1
.

So, we obtain

Cp,q
D ≥ Cp,q

Un−1
· (1− pa)

p(1− pa)
q

+1 · [1− (1− pa)
p][1− (1− pa)

q]

+

p∑

i=1

{
Cp−i,q

Un−1

(
p

i

)
pi

a(1− pa)
p−i

}

·[1− (1− pa)
p](1− pa)

q

+

q∑

i=1

{
Cp,q−i

Un−1

(
q

i

)
pi

a(1− pa)
q−i

}

·(1− pa)
p[1− (1− pa)

q]
∆
= Cp,q

D0
.

The right hand side of this inequality corresponds to the probability of collisions Cp,q
D0

where the distribution D0 is defined as

Pr
D0

[X = x] =

{
pa if x = a

1
n−1(1− pa) if x 6= a

.

Consequently, we obtain Cp,q
D ≥ Cp,q

D0
.

We repeat this step using the same reasoning but using another element. Let b 6= a
be an element of the set S and let pb its probability over D0, i.e., pb = PrD0[X = b] =

1
n−1(1− pa). Proceeding as before, we obtain Cp,q

D0
≥ Cp,q

D1
where D1 is defined as

Pr
D1

[X = x] =

{
pb if x = b

1
n−1(1− pb) if x 6= b

.

Finally, we obtain the following recurrence

Cp,q
D ≥ Cp,q

D0
≥ Cp,q

D1
≥ · · · ≥ Cp,q

Di
≥ · · ·

where the distributions are defined as

Pr
Di

[X = x] =

{
pi if x = ai

1
n−1(1− pi) if x 6= ai

with

ai =

{
a if i odd
b if i even

, p0 = Pr
D

[X = ai], ∀i ≥ 1 : pi = Pr
Di−1

[X = ai] .

75

Sylvain Pasini

Distribution D1

a

a

b

Distribution D0

Distribution D2

Initial Distribution D

X

X

X

X

0.4

0.2

0.0

0.4

0.2

0.0

0.4

0.2

0.0

0.4

0.2

0.0

Pr[X]

Pr[X]

Pr[X]

Pr[X]

Figure 5.1. Three First Steps of the Recurrence (D and D0,D1,D2).

76

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

Figure 5.1 represents on its top the original distribution D and below the three first
steps of the recurrence, i.e., D0,D1,D2.

The recurrence converges rapidly towards the uniform distribution. Indeed, we have pi+1 =
1

n−1(1− pi) and thus

pi =
1

n
+ (− 1

n− 1
)i · (p0 −

1

n
)

which converges to 1
n when n→∞. We can finally write

Cp,q
D ≥ Cp,q

D0
≥ Cp,q

D1
≥ · · · ≥ Cp,q

Dt
−→
t→∞

Cp,q
Un
.

We conclude that any probability of collision Cp,q
D , where D is any distribution along S, is

bigger or equal to the probability of collision Cp,q
Un

which uses uniformly distributed random
variables.

5.2 A Generic One-Shot Attack

Theorem 5.3 (Generic One-Shot Attack).
We consider an arbitrary two-party SAS-based message authentication protocol π using an
authenticated channel. π is run between Alice and Bob. Let t be the maximal bit-length of
the input messages. Let S be the set of all possible SAS transcripts for any input message
and let n be its cardinality.

There exists a generic polynomial-time attack using only one protocol instance with Alice
and another one with Bob with probability of success at least 1

n − 2−t. The attack running
time is µA + µB + O(1) where µA, resp. µB, is the complexity of a simulator of Alice,
resp. Bob.

The probability of success may reach the bound if and only if the SAS distribution is
uniform among the set S.

Theorem 5.3 says that there exists a one-shot attack against any SAS-based message
authentication protocol which succeeds with probability at least essentially 1

n where n is
the size of S. Thus, any SAS-based message authentication protocol which has no better
one-shot attack than the proposed one is essentially optimal. Indeed, any other protocol can
be attacked using this generic attack and consequently cannot have a better security.

In addition, Theorem 5.3 says that a protocol is more resistant to one-shot attacks when
its SAS distribution is uniform.

77

Sylvain Pasini

Proof.
We consider a general man-in-the-middle attack in which the adversary first picks m, m̂ ∈u

{0, 1}t and launches Alice with input m. The attack runs synchronized protocols between
Alice and a simulator for Bob, and a simulator for Alice with input m̂ and Bob as depicted
in Figure 5.2. Following the attack, every authenticated message which must be sent by

Simulator
of
Bo

Alice BobA

Simulator
of
Alice

...

m

...

...

...

pick m, m̂ ∈u {0, 1}t

authAlice(SASm) authAlice(SASm)
input: m̂

expected SAS bm

Figure 5.2. Generic One-Shot Attack.

the simulator is replaced by an authenticated message which has just been received by the
simulator.

Let SASm be the (random) sequence of all authenticated strings (the transcript) which
would be exchanged in the protocol between Alice and the simulator for Bob if the simulator
were honest. Let SASbm be the similar sequence between the simulator for Alice and Bob.
Clearly, if SASbm = SASm, the attack succeeds. Note that an attack makes sense only if m̂
is different from m. Clearly, the probability of success is

Pr[success] = Pr[SASm = SASbm and m 6= m̂] .

Note that Pr[SASm = SASbm] = Pr[SASm = SASbm and m 6= m̂]+Pr[SASm = SASbm and m =
m̂] and so,

Pr[success] = Pr[SASm = SASbm]− Pr[SASm = SASbm and m = m̂] .

From the simple rule Pr[A and B] ≤ Pr[B] we can write

Pr[success] ≥ Pr[SASm = SASbm]− Pr[m = m̂] .

SASm and SASbm are two identically distributed independent random variables whose support
is included in S. Due to Lemma 5.1 we can write

Pr[SASm = SASbm|m 6= m̂] ≥ 1

n

where the equality occurs if and only if the SAS distribution is uniform (also in Lemma 5.1).
Since m and m̂ are uniformly distributed in {0, 1}t, we have Pr[m = m̂] = 2−t.

78

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

So, we finally obtain

Pr[success] ≥ 1

n
− 2−t

where the equality holds if and only if the SAS distribution is uniform among the set S.

5.3 A Generic Multi-Shot Attack

In this section, we sketch a generic attack bounded by qA, resp. qB, instances of Alice, resp.
Bob, which works against any SAS-based message authentication protocol.

Theorem 5.4 (Generic Multi-Shot Attack).
We consider an arbitrary two-party SAS-based message authentication protocol π using a
weak authenticated channel. π is run between Alice and Bob. Let t be the maximal bit-
length of the input messages. Let S be the set of all possible SAS transcripts for any input
message and let n be its cardinality.

There exists a generic polynomial-time attack which uses qA ≤ n instances of Alice and

qB ≤ n instances of Bob with probability of success at least 1 − e−
qAqB

n − qAqb2−t. The
attack running time is qAµB + qBµA + O(1) where µA, resp. µB, is the complexity of a
simulator of Alice, resp. Bob.

Proof.
We consider that the adversary can use qA instances of Alice and qB instances of Bob. As
before, we consider a general man-in-the-middle attack. The adversary first picks mi ∈u

{0, 1}t with i = 1, .., qA and m̂j ∈u {0, 1}t with j = 1, .., qB and launches several instances
of Alice with input mi. For each instance of Alice, the attack runs a synchronized protocol
with a simulator for Bob. Then, it launches the instances of Bob and for each one it runs
a simulator for Alice with input m̂j. Every authenticated message which must be sent by a
simulator of Alice is replaced by an authenticated message which has just been received by
a simulator of Bob.

Let SASmi
be the (random) sequence of all authenticated strings (the transcript) which

would be exchanged in the ith instance of the protocol between Alice and the simulator of Bob
if the simulator were honest, and SASbmj

be the similar sequence between the jth instance
of the simulator of Alice and Bob. Let S the set of all possible protocol authenticated
transcripts and n its cardinality. Note that all SASmi

and all SASbmj
are independent and

identically distributed among the set S and let D be their distribution.

Clearly, if there exists a couple (i, j) such that SASbmj
= SASmi

, the attack succeeds. Note
that an attack makes sense only if m̂j is different from mi. Consequently, the probability of

79

Sylvain Pasini

Alice BoA

m1

pick mi, m̂j ∈u {0, 1}t

authAlice(SASm1
) expected SAS bm1

mi

mqA

authAlice(SASmi
)

authAlice(SASmqA
) expected SAS bmqB

expected SAS bmj

.

find i, j such that

SASmi
= SAS bmj

authAlice(SASmi
)

Figure 5.3. Generic Multi-Shot Attack.

success can be written as

Pr[success] = Pr[∃ i, j s.t. (SASmi
= SASbmj

and mi 6= m̂j)] .

As in the previous proof, note that

Pr[∃ i, j s.t. SASmi
= SASbmj

] =

Pr[∃ i, j s.t. SASmi
= SASbmj

and mi 6= m̂j]

+ Pr[∃ i, j s.t. SASmi
= SASbmj

and ∀k, ℓ s.t. SASmk
= SASbmℓ

: mk = m̂ℓ]

In the last equation, the first term of the right hand side is the probability of success. So,

Pr[success] = Pr[∃ i, j s.t. SASmi
= SASbmj

]

− Pr[∃ i, j s.t. SASmi
= SASbmj

and ∀k, ℓ s.t. SASmk
= SASbmℓ

: mk = m̂ℓ]

Due to the rule Pr[A and B] ≤ Pr[B], we obtain

Pr[success] ≥ Pr[∃ i, j s.t. SASmi
= SASbmj

]

−Pr[∀k, ℓ s.t. SASmk
= SASbmℓ

: mk = m̂ℓ] (5.3)

First, we should lower bound the first term of Equation (5.3), i.e., Pr[∃ i, j s.t. SASmi
=

SASbmj
]. Due to Lemma 5.2, we can bound this probability by the one using a uniform

distribution, i.e.,

Pr[∃ i, j s.t. SASmi
= SASbmj

] ≥ Pr[∃ i, j s.t. SASmi
= SASbmj

|D is uniform].

80

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

Consequently, we can bound the probability of collision by using the birthday paradox.
Indeed, we are looking for a collision between a set of qA elements and another set of qB
elements where each element was picked uniformly in a set of size n. A few details on the
birthday paradox are given in Appendix A. So, we obtain

Pr[∃ i, j s.t. SASmi
= SASbmj

] ≥ 1− e−
qAqB

n .

We should now upper bound the second term of Equation (5.3), i.e., Pr[∀k, ℓ s.t. SASmk
=

SASbmℓ
: mk = m̂ℓ]. This is the probability that for each SAS collision, there is also a collision

on the input messages. Clearly, this probability is smaller than the probability that there is
only one collision on the input messages. So, we can write

Pr[∀k, ℓ s.t. SASmk
= SASbmℓ

: mk = m̂ℓ] ≤ Pr[∃k, ℓ s.t. mk = m̂ℓ]

≤ qAqB2−t .

5.4 A Generic Multi-Shot Attack Against Non-Interactive Proto-
cols

We can also provide a generic attack against any SAS-based non-interactive message au-
thentication protocol (NIMAP). Indeed, with non-interactive protocols an adversary can
run the catalog attack. Indeed, he may launch several instances of Alice and recover many
authenticated SAS. Then, he simulates many instances of the protocol and finally only
launches one instance of Bob and uses a SAS from the catalog.

Theorem 5.5 (Generic Multi-Shot Attack Against Non-Interactive Protocols).
We consider an arbitrary two-party SAS-based non-interactive message authentication pro-
tocol (NIMAP) π using a weak authenticated channel. π is run between Alice and Bob.
Let t be the maximal bit-length of the input messages. Let S be the set of all possible SAS

transcripts for any input message and let n be its cardinality.

There exists a generic polynomial-time attack which uses qA instances of Alice, one
instance of Bob, and O(T) protocol simulations, with probability of success at least 1 −
e−

qA·T

n − qAT2−t. The attack running time is qAµB +T (µA +µB) +O(1) where µA, resp.
µB, is the complexity of a simulator of Alice, resp. Bob.

Proof.
This attack is similar to the one of Theorem 5.4 except that the instances of Bob can be
simulated. Indeed, Bob only receives messages and then takes a deterministic decision,
accept or reject. Since Bob does not provide any contribution in the messages, its behavior
can be totally simulated.

81

Sylvain Pasini

We consider the generic attack in which the adversary starts by simulating T Alice in-
stances launched with random inputs m̂j ∈u {0, 1}t and obtains a list of possible SAS, i.e.,
SASbmj

. Then, he launches qA real instances of Alice with random inputs mi ∈u {0, 1}t and
consequently obtains qA authenticated SAS, i.e., SASmi

. The attack succeeds when at least
one authenticated SAS released by Alice corresponds to a computed one, i.e., there exists
i, j such that SASmi

= SASbmj
. The adversary can launch a single Bob with input m̂j by

simulating Alice and can use SASmi
for the authentication when needed.

Alice BoA

m1

pick mi, m̂j ∈u {0, 1}t

authAlice(SASm1
)

expected SAS bm1

simulation

mi

mqA

authAlice(SASmi
)

authAlice(SASmqA
)

expected SAS bmqB

expected SAS bmj

.

find i, j such that

SASmi
= SAS bmj

authAlice(SASmi
)

simulation

Figure 5.4. Generic Multi-Shot Attack against Non-Interactive Protocols.

From the proof of Theorem 5.4 we deduce that the probability of success is at least

1− e−
qA·T

n − qAT2−t.

5.5 A Short Overview on Generic Attacks Against Unilateral Pro-

tocols

In conclusion, we have three theorems which prove the best expected security of any SAS-
based message authentication protocol. The theorems and lemmata are also proving that
a protocol achieves the highest security level when the distribution of the authenticated
transcripts is uniform. In other words, given a set of possible authenticated transcripts S,
the protocol will achieve the strongest security level when the entropy of the authenticated

82

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

string is maximum, i.e., when the distribution of the authenticated strings is uniform among
S.

To summarize the previous results, let S be the set of all authenticated transcripts and n
be its cardinality, i.e., n = |S|. Then,

Lemma 5.2 says that a SAS-based message authentication protocol achieves the highest
security when the distribution of the authenticated transcripts is uniform. A similar
result was presented by Laur and Nyberg [LN06b, Appendix B].

Theorem 5.3 says that there exists a one-shot attack against any SAS-based message au-
thentication protocol, either interactive or non-interactive, which succeeds with prob-
ability essentially 1

n . A similar result was presented by Laur and Nyberg [LN06b,
Theorem 4, Appendix B].

Theorem 5.4 says that there exists a generic attack bounded by qA instances of Alice and
qB instances of Bob against any SAS-based message authentication protocol, either
interactive or non-interactive, using a weak authenticated channel which succeeds with

probability essentially 1 − e−
qAqB

n . Hence, they cannot be secure unless qA · qB is
negligible compared to n.

Theorem 5.5 says that there exists a generic attack bounded by qA instances of Alice and
by a complexity T against any SAS-based non-interactive message authentication pro-
tocol using a weak authenticated channel which succeeds with probability essentially

1− e−
qA·T

n . Hence, they cannot be secure unless qA · T is negligible compared to n.

One may ask about the relation between the one-shot security and the multi-shot security
of a protocol. Here is a useful lemma given by Vaudenay [Vau05b].

Lemma 5.6 (One-Shot Attacks versus Multi-Shot Attacks).
We consider a SAS-based message authentication protocol with claimant Alice and verifier
Bob in which a single SAS is sent. We denote by µA (resp. µB) the complexity of Alice’s
(resp. Bob’s) part.

We consider adversaries such that the number of instances of Alice (resp. Bob) is at
most qA (resp. qB). We further denote T0 and p0 their time complexity and probability of
success, respectively.

For any qA, qB, and any multi-shot adversary A, there is a generic transformation
which transforms A into a one-shot adversary with complexity T ≤ T0 +µAqA +µBqB and
probability of success p ≥ p0/qAqB.

83

Sylvain Pasini

5.6 Extension to Two-Party Bilateral Protocols

Generic Bilateral Message Authentication Protocol. Now, assume that the protocol is
used to authenticate a message mA from Alice to Bob and to authenticate a message mB

from Bob to Alice. Clearly, there will be an authenticated transcript in both directions.
We cannot put these messages in the same set since the authentication is done by different
identities. So, we have to manage one authenticated transcript for each participant.

An adversary against a message cross-authentication is successful if at least one instance
ends with an output message m̂ and an identity îd and no instance was launched on the
node of identity îd with input message m̂.

Clearly, attacking Alice only may be reduced to an attack against a unilateral protocol. So,
depending on the number of instances (one-shot or multi-shot), the adversary may proceed
as in Theorem 5.3 or as in Theorem 5.4. The same remark holds for Bob.

So, the overall attack, targeting Alice and/or Bob, will succeed with probability specified
by Theorem 5.3 (for one-shot) or by Theorem 5.4 (for multi-shot) at least.

5.7 Optimality of a Protocol

In this chapter, we presented generic attacks which can be applied to any SAS-based message
authentication protocol. So, all SAS-based message authentication protocols are vulnerable
to these attacks. This means that the most secure protocol will be vulnerable to these
attacks as well.

Definition 5.7 (Optimality in Term of Deception).
A SAS-based message authentication protocol π is said to be optimal if the best attack is
one of the above generic attacks.

A similar definition was presented by Laur and Nyberg [LN06b, Definition 1, Appendix B].
Note that they also stated that there is no optimal two-move protocol [LN06b, Corollary 1,
Appendix B]. This means that any optimal protocol has at least three moves over the
insecure channel (and one authenticated move).

Definition 5.8 (Optimality in Term of Moves).
A SAS-based message authentication protocol π is said to be round-optimal if it requires
three moves over the insecure channel.

84

Part I Chapter 5 - On the Optimal Entropy of Authenticated Communication

5.8 Unconditional Security

Naor, Segev, and Smith [NSS06] analyzed the generic security of (unilateral) message au-
thentication protocols. In particular, they proposed an unconditionally secure k-round in-
teractive protocol π, with k ≥ 3, allowing to authenticate an n-bit message such that any
(unbounded) adversary A succeeds in a deception attack with probability at most ε, i.e.,
Advforge

π (A) ≤ ε. This protocol requires a SAS length of k = 2 log(1/ε) + 2 logk−1(n) +O(1)
bits. Clearly, for any integer n > 0, any 0 < ε < 1, choosing a big enough number of rounds,
i.e., k = log(n), leads to SAS values of 2 log(1/ε) +O(1) bits.

Naor, Segev, and Smith [NSS06] also proved that to authenticate an n-bit message where
n ≥ 2 log(1/ε) + 4 and 0 < ε < 1, there exists no authentication protocol such that k ≤
2 log(1/ε) − 6. It is a lower bound on the SAS length. To break this bound, Naor, Segev
and Smith [NSS06] proved that the protocol should uses a one-way function.

Remember that our above results (with respect to computational security) say that we
should at least use a SAS length of 1/ε bits to ensure that any adversary succeeds in a
deception attack with probability at most ε. Naor, Segev, and Smith [NSS06] conclude that
the advantage of assuming computational security (instead of unconditional security) is to
reduce the amount of authenticated communication from 2 log(1/ε) to log(1/ε). Also, at
the same time, the number of moves is reduced.

Another interesting point is the particular case of NIMAP with respect to unconditional
security. Indeed, Wang and Safavi-Naini [WSN08] showed that there is no unconditionally
secure NIMAP except a trivial one which sends the message itself over the authenticated
channel. Note that the proof is valid when no secret is shared, and with no additional
property on the authenticated channel. This proof was also presented by Mashatan [Mas08].

85

Sylvain Pasini

86

Chapter

SIX

Stand-Alone Security versus

Complex Settings Security

Usually, during the analysis of a protocol π, we first consider security in the stand-alone
model. In that model, the adversary can only run a single instance of the protocol and
thus it is much easier to write a formal security proof. However, the stand-alone security
model covers only the case where no other protocols are executed together with the protocol
π. In particular, it is not clear whether a concurrent execution of several different protocol
instances remains secure. So, in a second time, we analyze the security of the protocol in
a more complex setting, where the adversary may use several instances of the protocol as
well as other concurrent protocols. We will show that concurrent compositions of SAS-based
message authentication protocol(s) remain secure if some natural assumptions are satisfied.
As mentioned before, we consider security against chosen input attacks and we assume there
may be some public key in the common reference string (CRS) model.

6.1 Stand-Alone Security

Stand-alone security consider a model where there is only one adversary and one protocol
instance (with all the required parties). In order to describe an attack, we describe a game
between an adversary A and a challenger C who simulates the whole protocol execution, i.e.,
C simulates the behavior of all involved participants.

87

Sylvain Pasini

As example, consider any group of participants G, involving P1, . . . ,Pn, running a pro-
tocol π in the presence of an adversary A. The corresponding security game is depicted
in Figure 6.1. Precisely, the challenger C first generates system wide public parameters
crs ← setup and sends them to the adversary A. Then, A can adaptively specify inputs
for all parties P1, . . . ,Pn who can join the protocol π. More precisely, a party Pi remains
inactive until A specifies its input xi. If xi = ⊥ then the party Pi refuses to join the protocol
π. Otherwise, the party Pi joins the protocol π with the input xi. A can also adaptively
corrupt protocol participants. At the end of the execution, the challenger collects all outputs
~y = (y1, . . . , yn, ya) and determines whether A succeeded in deception or not. Note that in
Figure 6.1, we used a predicate b← dec(~y) which indicates if there where a deception (b = 1)
or not (b = 0). In the following we will use the notation ~y ← πA(G, ~x) to assign to ~y the
participant outputs after a protocol execution of π in presence of an adversary A who chose
the group G and the respective inputs ~x.

A C

crs←−−−−−−−− crs← setup

launch(P1,x1)−−−−−−−−→
π

(1)
1←−−−−−−−−

launch(P2,x2)−−−−−−−−→
π

(1)
2←−−−−−−−−

send(π
(1)
1 ,∅)−−−−−−−−→

m1←−−−−−−−−
send(π

(1)
2 , bm1)−−−−−−−−→

m2←−−−−−−−−
. . .

outputs ya each Pi outputs yi

A wins if dec(~y) = 1.

Figure 6.1. Generic Security Game in the Stand Alone Model.

For simple protocols, it is easy to define deception by listing all invalid end configurations,
i.e., to define when dec(~y) is equal to 0 or to 1. However, such an approach quickly becomes
tedious and technical for complex protocols. Hence, we should use a generic approach.

88

Part I Chapter 6 - Stand-Alone Security versus Complex Settings Security

Idealized Implementation

Many protocols are designed to meet complex security objectives. So, before starting the
design, we first need to state clearly the objectives that the protocol should achieve. For
that we define an idealized implementation, denoted by π◦, which catches all unavoidable
attacks. For instance consider a two-party unilateral message authentication protocol. In
short, a party Pid1 wants to send a message m to a party Pid2 in an authenticated way.
Obviously, we cannot guarantee that the message m reaches the destination in the real
world. Indeed, the adversary can always drop all in-band messages. However, since m is
authenticated (and thus integrity is guaranteed), Pid2 should receive either the message m
or the abort signal ⊥. The fact that Pid2 may receive ⊥ is a good example of unavoidable
attack. Note that the adversary may decide whether to corrupt the sender depending on
the first in-band message which often reveals the input m. In other words, the adversarial
corruption pattern can always depend on the message m.

Thanks to the ideal implementation, we can then define the security of a real protocol
π through a specific game that directly quantifies how much the real execution π diverges
from the idealized implementation π◦.

All the security goals of the protocol can be formalized by choosing an appropriate ideal
world model where a trusted third party T does all computations on behalf of the partici-
pants. More formally, the ideal world model is defined as follows:

Definition 6.1 (Ideal World Model).
In the ideal world model, we consider an ideal protocol π◦ executed in presence of partici-
pants P1, . . . ,Pn, a trusted third party T, and an ideal world adversary A◦.

T can securely exchange messages with P1, . . . ,Pn, and with A◦.

π◦ can be formalized by specifying the behavior of P1, . . . ,Pn and T.

All computations are done by T. That is, P1, . . . ,Pn are forced to submit their inputs xi

to T. Then, T computes the outputs yi for all participants and sends them back securely
to each one.

If a participant Pk does not submit its input xk, T sends ⊥ to all participants to abort
the protocol. So, either all participants receive their outputs yi or either all participants
receive the abort output ⊥.

As concrete example, we present an idealized implementation for a group message au-
thentication protocol (GMAP), where the set of participants is determined dynamically
and the final outcome is combined from all inputs. More precisely, a GMAP for a group
G = {id1, . . . , idn} works as follows:
Each participant Pid, with id ∈ G, starts with input mid and ends with output (G, ~m, where
~m = (mid1 , . . . ,midn). As a result, given G and ~m it is trivial to restore who participated

89

Sylvain Pasini

in the protocol and what was the corresponding inputs. The corresponding idealized im-
plementation, as depicted in Figure 6.2, models all unavoidable attacks. In particular, note
that a real world adversary can always control who joins the group by selectively blocking
in-band messages. As seen before, A may also drop all in-band messages and thus all Pidi

may receive ⊥.

1. An initiator node Pid∗ sends (id∗,mid∗
) to A◦ and then to T.

2. The adversary adaptively determines the set of participants G:

(a) A◦ sends an identity id to T who sends an invitation message to Pid.

(b) Pid chooses to join the protocol or not:

Join. He joins by sending (id,mid) to A◦ and then to T. (id ∈ G)

Refuse. He does not join by sending ⊥. (id /∈ G)

(c) Steps (a)–(b) are repeated until A◦ stops the group formation phase.

⋆. The group is now fixed and represented by G. The inputs are ~m = {id ∈ G : mid}.

3. The adversary A◦ can now either halt the execution or not:

Halt. To halt, A◦ sends 0 to T. Then, all id ∈ G will receive ⊥ from T.

Continue. To continue, A◦ sends 1 to T. Then, all id ∈ G will receive (G, ~m) from T.

Figure 6.2. Idealized Implementation of a Dynamic GMAP.

Also, note that we can obtain descriptions of different GMAP by modifying the ideal
implementation. For example, if we drop the first step then we obtain a group authentication
protocol with no initiator.

Back to the Real World

By using the idealized implementation π◦, we are now able to determine if a (real world)
adversary A against the (real world) protocol π succeeded in deception or not. In short,
A succeeds in deception if it is impossible to achieve the same end configuration for honest
participants in the ideal world.

Definition 6.2 (Success in Deception).
Let G = {id1, . . . , idn} be the set of participants, let H ⊆ {id1, . . . , idn} be the set of honest
(non-corrupted) participants and let (xi)i∈H be the corresponding inputs.

Then the adversary A fails in deception if one can choose inputs (x̂i)i/∈H such that A◦

can achieve the same end configuration (yi)i∈H for the honest parties.

90

Part I Chapter 6 - Stand-Alone Security versus Complex Settings Security

We denote by dec(πA(H, ~x)) the predicate which indicates a deception in the real world.

In other words, Definition 6.2 says that

• if the real attack is reproducible in the ideal world, it is not considered as a deception
and the adversary fails in deception,

• if the real attack is not reproducible in the ideal world, then the adversary succeeds
in deception.

Definition 6.3 (Stand-Alone Security in Term of Deception).
A protocol π is (T, ε)-secure in the stand-alone model if for any T -time real world adver-
sary A the deception probability Advforge

π (A) defined by

Advforge

π (A) = Pr[crs← setup, (G, ~x)← A(crs) : dec(πA(G, ~x) = 1)]

is bounded by ε.

Real versus Ideal Worlds

Let us now consider compatible real and ideal world adversaries. A compatible pair of adver-
saries implies that both specify the same inputs xi and corrupt the same set of participants
in the same order. To be punctual, we assume that the setup procedure is executed also in
the ideal world1 and the corresponding input distributions and corrupted parties coincide
for any value of public parameters crs.

Let ~ψ = (ψi, . . . , ψn, ψa) and ~ψ◦ = (ψ◦
i , . . . , ψ

◦
n, ψ

◦
a) denote the corresponding output

distributions respectively in the real and ideal worlds. For any pair of compatible adversaries
(A,A◦), ifA succeeds in deception, then the two vectors ~ψ and ~ψ◦ should be different. So, the
statistical difference between the distributions ~ψ and ~ψ◦ is at least Advforge

π (A). Theorem 6.4
shows for the case of message authentication protocols that it is possible to reach this bound
when all inputs are extractable from the outputs of honest participants. Namely, for any
real adversary A there exists a canonical ideal world adversary A◦ with comparable running
time such that the corresponding output distributions are Advforge

π (A)-close.

Theorem 6.4 (Stand-Alone Security of a GMAP).
Let π be a (T, ε)-secure GMAP in the stand-alone model.

For any T -time real world adversary A there exists a compatible T + O(1)-time ideal
world adversary A◦ such that the corresponding output distributions in the real and ideal
worlds, i.e., ~ψ and ~ψ◦ respectively, are ε-close.

1Strictly speaking, such an assumption is unnecessary but it guarantees re-usability of a common reference
string.

91

Sylvain Pasini

Proof.
Although we give the proof only for group message authentication protocols, it holds for all
message authentication protocols considered in this thesis.

For the proof, we construct an universal interface I between the real world adversary A
and the ideal world. As depicted in Figure 6.3, the interface I acts as a translation unit.
From the point of view of A, the interface I simulates the real world execution of π and
thus acts as a challenger. I carries out the ideal world attacks corresponding to the real
world ones.

Real world Interface Ideal world
A I Pi, i /∈ H,T

crs←−−−−−−−−−−−−−
protocol inputs−−−−−−−−−−−−−→

protocol messages←−−−−−−−−−−−−−
protocol messages−−−−−−−−−−−−−→
corruption calls−−−−−−−−−−−−−→
released states←−−−−−−−−−−−−−

Simulate the protocol π for A:
⋄ get inputs (xi)i∈H of honest parties
⋄ follow the protocol specifications
⋄ if needed corrupt honest parties

Interact with T and Pi, i /∈ H:
⋄ determine group members
⋄ extract missing inputs (xi)i/∈H

crs←−−−−−−−−−−−−−
protocol inputs−−−−−−−−−−−−−→
inputs to A◦

←−−−−−−−−−−−−−
messages to T−−−−−−−−−−−−−→

corruption calls−−−−−−−−−−−−−→
released states←−−−−−−−−−−−−−

Figure 6.3. The Canonical Interface for the Real World Adversary.

Public parameters and protocol inputs. Note that in the security game the public
parameter crs is fixed by the challenger and given to the real world adversary A. So it
may come either from the ideal world or either from the interface. Following our model, A
chooses the protocol inputs and then gives them to the challenger, in this case to I. Note
that the protocol inputs may depend on the public parameters crs. Remember that we are
using two compatible adversaries, i.e., both should specify the same protocol inputs and the
same corrupted participants.

Honest participants. The simulation of honest participants is straightforward. Indeed,
the public parameters crs are fixed and all honest participants send their inputs xi to A◦, in
this case to I. Hence, I can do all missing computations on behalf of the honest participants.

Corrupted participants. When A makes a corruption call, I just forwards the call to the
ideal world and then adds all variables that are used in simulation to the released state.

Group formation. The simulation of the group formation is also possible since the actions
of A uniquely determine when and which parties are included into the group.

Simulation termination. At the end of the simulation, I internally obtains all outputs
of the honest parties (since they were simulated). A submits also its remaining outputs.
As the simulation is perfect, the corresponding output vector ~y coincides with the outputs
obtained in the real execution.

92

Part I Chapter 6 - Stand-Alone Security versus Complex Settings Security

Now I can extract the missing inputs (x̂i)i/∈H from the outputs of honest parties. I can
submit them to T as the inputs of corrupted participants. There are three possibilities:

1. All honest parties halt with ⊥, then I must send 0 to T.

2. All outputs of honest participants provide the same missing inputs (x̂i)i/∈H. Then I
must send 1 to T.

3. The outputs of honest participants lead to different inputs (x̂i)i/∈H. Then, I fails.

As assumed in the theorem statement, the failure probability (case 3) must be less than
ε, otherwise the protocol cannot be (T, ε)-secure. Therefore, the compound adversary I-A
consisting of I and A has indeed the desired properties.

6.2 Security in Complex Settings

The stand-alone security model of Section 6.1 is adequate only if a protocol is executed in
isolation. This assumption is rarely fulfilled in practice. Indeed, protocols are often executed
concurrently to complete more elaborate tasks. In such settings, stand-alone security guar-
antees are commonly insufficient since the adversary can utilize external information that
leaks from the others protocols. For example, the adversary may repeat or swap messages
when several instances of the same protocol are executed at the same time. As seen in Chap-
ter 4, Bellare and Rogaway were the first to define a formal attack model [BR93a, BR95]
that considers attacks against several instances of the same authentication protocol. How-
ever, the Bellare-Rogaway model does not cover the cases when the authentication protocol
is executed together with other kind of protocols. In the following, we prove that all stand-
alone secure SAS-based message authentication protocols are universally composable. In
other words, a SAS-based message authentication protocol π always preserves security in a
computational context ̺〈·〉 that uses the protocol π in a black-box way, i.e., the context ̺〈·〉
provides only the inputs and uses only the outputs of π.

We emphasize that universal composability does not automatically guarantee security in
the Bellare-Rogaway model. The main cause follows from the fact that all classical authen-
tication protocols rely on a trusted setup procedure πts that generates long-term secrets. As
a result, the universal composability guarantees security only if all protocol instances use
independently generated long-term secrets. The Bellare-Rogaway model considers a setting
where all protocol instances share the same long-term secrets and thus universal compos-
ability might be insufficient. Obviously, these security notions coincide if we can guarantee
security in the stand-alone model with no trusted setup. The latter makes SAS-based mes-
sage authentication protocols (SAS-MAP) special, since they are universally composable and
secure in the Bellare-Rogaway model at the same time.

93

Sylvain Pasini

6.2.1 Reminder on Universal Composability

As emphasized above, protocols are seldomly executed in isolation. Indeed, a protocol π is
often only a small part of the entire computational procedure also known as computational
context. Now if a context ̺〈·〉 has only black-box access to π, we can freely use different
protocols as long as they implement the same functionality. In particular, we can compare
the behavior of the real and ideal implementations π and π◦. To be precise, we must compare
the corresponding compound protocols ̺〈π〉 and ̺〈π◦〉.

Definition 6.5 (Universal Composability).
Let ~x = (x1, . . . , xn, xa) denote the inputs of the participants P1, . . . ,Pn and the input
of the adversary A at the beginning of the context ̺〈·〉. Similarly, let the vectors ~y =
(y1, . . . , yn, ya) and ~y◦ = (y◦1, . . . , y

◦
n, y

◦
a) denote the outputs of the compound protocols

̺〈π〉 and ̺〈π◦〉.
A protocol π is said (T, T ◦, T̺, ε)-universally composable if for any input distribution

~x ← D, for any T̺-time computational context ̺〈·〉, and for any T -time adversary A
against the protocol ̺〈π〉, there exists a T ◦-time adversary A◦ against ̺〈π◦〉 such that the
statistical difference between the output distributions of ~y and ~y◦ is at most ε.

Definition 6.5 remains ambiguous unless we completely specify the execution and commu-
nication model. In the following, we consider the classical setting, where the adversary has
full control over the protocols scheduling and message delivery. Namely, the execution of a
protocol is divided into fine-grained micro-rounds. All parties are initially inactive except
the adversary. The adversary can activate other participants so that only one of them is
active in each micro-round. During a micro-round, the active participant can either read one
incoming message or compose a single outgoing message. After that the party is suspended
and the control goes back to the adversary who can choose next party for activation. The
execution ends when all participants have halted. See the manuscript of Canetti [Can00]
for detailed discussion and for further references. We remark that the approach outlined
above corresponds to the most intuitive formalization given by Lindell [Lin03] of universal
composability but there are several more popular alternatives [Can01, PW01].

Protocols with Shared Setup

Many protocols rely on pre-shared information like long-term secret keys or certificate chains.
Such protocols can be divided into two phases:

• In the first phase, a trusted dealer creates and securely distributes the necessary pre-
shared data.

• The second phase corresponds to the actual execution of the protocol.

94

Part I Chapter 6 - Stand-Alone Security versus Complex Settings Security

Hence, the protocol π itself is a pair of sub-protocols (πts, πex) where πts corresponds to
the trusted setup and πex corresponds to the actual execution. Normally, we want to reuse
pre-shared data and thus different protocols may share the same setup phase πts. As a
result, messages from different protocols become correlated and this creates new attack
opportunities. The security model of Chapter 4 proposed by Bellare and Rogaway formalizes
the corresponding threats for message authentication protocols, see the articles [BR93a,
BR95].

Differently from the stand-alone model, the adversary A can simultaneously attack many
protocol instances π(1)

ex , . . . , π
(q)
ex that share the same setup phase πts. More formally, A can

adaptively launch new protocol instances π(i)
ex by specifying the set of participants G(i) and

the corresponding inputs ~x(i). The adversary A succeeds in deception if at least one protocol
instance ends with successful deception.

Note that a shared setup phase may weaken protocol instances even if we reuse only public
parameters. Hence, we must prove that security in the CRS model guarantees security in
the Bellare-Rogaway model of Chapter 4.

6.2.2 Composability Guarantees of a SAS-based Message Authentication Pro-
tocol

Regardless of the desired idealized implementation it is possible to prove that all SAS-MAP
are universally composable if they are secure in the stand-alone model. For brevity, we prove
the corresponding result only for group authentication protocols. We then discuss on the
limitations of this proof technique below.

Theorem 6.6 (Universal Composability of a SAS-MAP).
Let π be a (Tπ, ε)-secure SAS-MAP in the stand-alone model.

There are constants c1, c2 such that the protocol π is (T, T ◦, T̺, ε)-universally composable
whenever T ◦ ≥ c1 · T and T + T̺ ≤ Tπ − c2.

Note that in the proof, we will do some implicit assumptions like no shared setup or
possibility of message identification. We will then discuss on the protocol requirements in
order to satisfy these assumptions.

Proof.
Let ̺〈·〉 be a T̺-time computational context and let A be a T -time (real world) adversary
against the compound protocol ̺〈π〉. For the proof we construct an efficient interface I∗
between A and the ideal world protocol ̺〈π◦〉. Now note that I depicted in Figure 6.3 and
described in the proof of Theorem 6.4 is sufficient for this purpose if we can separate protocol
and non-protocol messages. The corresponding construction is depicted in Figure 6.4. That
is, we direct non-protocol messages past the interface I. To be precise, we must guarantee

95

Sylvain Pasini

Real world Interface Ideal world
A I Pi, i /∈ H,T

crs←−−−−−−−−−−−−−
protocol inputs−−−−−−−−−−−−−→

protocol messages←−−−−−−−−−−−−−
protocol messages−−−−−−−−−−−−−→
corruption calls−−−−−−−−−−−−−→
released states←−−−−−−−−−−−−−

Simulate the protocol π for A:
⋄ get inputs xi of honest parties
⋄ follow the protocol specification
⋄ if needed corrupt honest parties

Interact with T and Pi, i /∈ H:
⋄ determine group members
⋄ extract missing inputs (xi)i/∈H

crs←−−−−−−−−−−−−−
protocol inputs−−−−−−−−−−−−−→
inputs to A◦

←−−−−−−−−−−−−−
messages to T−−−−−−−−−−−−−→

corruption calls−−−−−−−−−−−−−→
released states←−−−−−−−−−−−−−

non-protocol messages←−−−
non-protocol messages−−−→

Figure 6.4. The Canonical Interface for Complex Settings.

that the simulation is perfect, i.e., the adversary sees the messages in the same order as in
the real execution. Hence, we must additionally assume that there is a general (possibly
dynamic) scheduling policy that uniquely determines in which order an honest participant
Pi outputs protocol and non-protocol messages. Secondly, the corruption calls are handled
by I that corrupts the honest participant and adds the variables used in simulation to the
state of released participant.

Now it is possible to verify that the simulation of the protocol is perfect and that there
can be a discrepancy between the real and ideal world outputs ~y and ~y◦ only if A suc-
ceeds in deception. The corresponding deception probability must be less than ε or other-
wise A together with the context ̺〈·〉 form a new stand-alone adversary A∗ that achieves
Advforge

π (A∗) > ε. The latter leads to a contradiction, since the running time of A∗ is
T + T̺ +O(1). Now the claim follows, as the overhead in the simulation is constant.

Shared Setup in the CRS Model. As a first limitation of Theorem 6.6, note that the
interface I may completely fail if protocols share the same trusted setup πts. For obvious
reasons, such failures are caused by protocols π(1)

ex , . . . , π
(q)
ex that share the long-term secrets.

If the trusted setup πts is run independently from I, then it does not know the corresponding
long-term secrets and cannot simulate the execution of honest parties. Alternatively, if the
setup πts is a part of I, then we can replace only a single protocol instance π(i)

ex with the
ideal implementation. After that the corresponding compound adversary A-I knows all
long-term secrets and all other protocol instances π(1)

ex , . . . , π
(q)
ex become insecure. Hence, one

needs more elaborate security proofs for all message authentication protocols that are based
on long-term secrets. The latter is expected result, as some of these protocols are known to

96

Part I Chapter 6 - Stand-Alone Security versus Complex Settings Security

be secure in the stand-alone model but insecure in the Bellare-Rogaway model.

However, if the trusted setup phase πts generates only public values, then these problems
disappear since the knowledge of public parameters is sufficient to simulate the behavior of
honest parties. In particular, the adversary A∗ is still a valid stand-alone adversary and the
proof of Theorem 6.6 still holds.

Corollary 6.7 (Universal Composability of SAS-MAP in the CRS Model).
Let π be a (Tπ, ε)-secure SAS-MAP in the stand-alone model. Assume that π is instantiated
in the CRS model and π may be split in a trusted setup phase and an execution phase,
i.e., π = (πts, πex).

There are constants c1, c2 such that the protocol is (T, T ◦, T̺, ε)-universally composable
whenever T ◦ ≥ c1 · T and T + T̺ ≤ Tπ − c2 even if the protocol shares the setup phase πts

with other protocols.

This result represents the main technical difference between classical and SAS-based mes-
sage authentication. SAS-based message authentication protocols are (in general) not based
on long-term secrets and thus they remain secure in any computational context. Classical
message authentication protocols are also universally composable as long as secret keys are
used only once. If we want to reuse secret keys, we must consider πts, π

(1)
ex , . . . , π

(q)
ex as single

multi-round authentication protocol and prove its security in the Bellare-Rogaway model of
Chapter 4.

Message Identification. As a second restriction, note that the proof of Theorem 6.6 out-
lined above is valid only if the interface I∗ can correctly separate protocol messages from
non-protocol messages. Otherwise, messages may become switched between different pro-
tocols and the corresponding synchronization errors can cause arbitrary failures. To avoid
such subtle issues, theoretical treatments often assume that each message contains a spe-
cific tag that uniquely determines the corresponding protocol instance [Can00]. Indeed, we
can assume that each protocol has an initiator Pi who first broadcasts or sends directly to
group members a unique tag, denoted by tag. This unique tag is appended as identifier
to each protocol message. We emphasize that an adversary can alter tag. In other words,
we can always avoid synchronization errors for in-band communication without excessive
performance penalties. However, the latter is not true for authenticated messages, since we
do not want to increase the amount of communication over the (expensive) extra channel.
Finally, any SAS-MAP remains universally composable if the restriction rules of Figure 6.5
hold.

Restrictions R1–R3 are natural requirements. We can force the restriction R4, if we guar-
antee that no more than one protocol instance for the same group is run at the same time.
The latter is a relatively mild limitation, since two or more parallel instances of an authen-
tication protocol in the same group can be replaced with a single protocol instance.

97

Sylvain Pasini

R1: Randomness used in the protocol instance is freshly generated.

R2: The outputs are never used before all parties reach accepting state.

R3: All group members have different identities, i.e., G is indeed a set.

R4: The authenticated messages determine a unique protocol instance.

Figure 6.5. Restriction Rules.

Several articles [LN06a, LP08] have just postulated the usage restrictions R1–R4 and have
not studied the maximal damage caused by synchronization errors. For two-party protocols,
the corresponding extra advantage has been estimated by Pasini and Vaudenay [Vau05b,
PV06a, PV06b]. Chapter 5 gives details on these estimations. In particular, Lemma 5.6 can
be re-written as follows.

Lemma 6.8 (Security of Two-Party Message Cross-authentication Protocols).
Let π be a (T, ε)-secure message cross-authentication protocol between P1 and P2 in the
stand-alone model.

If P1 launches up to q1 and P2 up to q2 concurrent instances of the protocol π, then the
deception probability can increase up to q1q2 · ε.

Proof (Sketch).
We consider an adversary A against the protocol π who can launch up to q1 instances of π
with P1 and up to q2 with P2. A successful deception pairs an instance launched by P1 and
an instance launched by P2 with the same idea than depicted in Figure 5.3. In the following
we build a stand-alone adversary A∗ against only one protocol execution.

Let εij denote the probability that the first deception event happens for the ith instance
launched by P1 and for the jth instance launched by P2. Then the overall deception prob-
ability Advforge

π,...,π(A) is just
∑

i,j εij . Hence, one can create a stand-alone adversary A∗ by
simulating all protocol instances except for a random instance pair that is substituted with
the challenge instance. Clearly, A∗ succeeds in deception at least with the probability that
the pair was correctly chosen, i.e.,

Advforge

π (A∗) ≥ 1

q1q2
· Advforge

π,...,π(A) .

Remember that Advforge

π (A∗) ≤ ε, the claim directly follows.

98

Part I Chapter 6 - Stand-Alone Security versus Complex Settings Security

6.3 SAS-based Protocol Security in a Nutshell

In Section 6.1, we defined the security of a SAS-based message authentication protocol
(SAS-MAP) executed in isolation. In Section 6.2, we proved that a SAS-MAP secure in the
stand-alone model remains secure in complex settings in which other protocols are executed
provided that R1–R4 are satisfied.

Remember that an adversary A succeeds in deception if the end state of at least one
protocol instance π(i) is invalid, i.e., honest parties accept different outputs. Since a single
instance of a SAS-MAP has non-negligible deception probability we must bound the number
of protocol instances that can be launched. We say that a SAS-MAP π is (T, q, ε)-strongly
self-composable if any T -time adversary A that can launch up to q protocol instances suc-
ceeds in deception with probability at most ε.

Theorem 6.9 (Security of a SAS-MAP).
Let π be a (T, ε)-secure SAS-MAP in the stand-alone model.

If restrictions R1–R4 are satisfied, then the protocol instances are also (τ, q, qε)-self-
composable for τ = T −O(1) .

Proof.
Let B be such a τ -time adversary that contradicts the claim, i.e., Advforge

π(1),...,π(q)(B) > qε.

Without loss of generality, we can assume that an adversary launches the protocol instances
in the following way. First, B chooses the initiator Pi and then the set of participants
that get the introduction message tag from Pi and decide to reply. Second B provides the
corresponding inputs to the participants. For simplicity, assume that tag is in {1, . . . , q} and
let ε(tag) denote the probability that B succeeds in deception with respect to the instance
π(tag). Clearly, Advforge

π(1),...,π(q)(B) =
∑q

tag=1 ε
(tag).

By the assumption we have ε(1) + · · · + ε(q) > qε. Hence, we have the following simple
reduction strategy A. Given Kp from C:

1. Choose a target protocol instance k ∈u {1, . . . , q}.

2. Simulate the Bellare-Rogaway model until B specifies G(k) and ~̂m
(k)

.

3. Send G(k) and ~̂m
(k)

to the challenger C in the stand-alone model.

4. Continue the simulation by generating all messages tagged by tag 6= k.

5. Obtain other messages with tag = k from the stand-alone environment.

6. If required by B, corrupt the true nodes in the stand-alone environment.

99

Sylvain Pasini

Clearly, A provides a perfect simulation of the Bellare-Rogaway model for B. The probability
that A chose the right target instance k is 1

q and thus

Advforge

π(k)(A) =
1

q
Advforge

π(1),...,π(q)(B) =
ε1 + · · ·+ εq

q
> ε

and we have a desired contradiction.

100

Chapter

SEVEN

Two-Party Unilateral Message

Authentication

We start this chapter by defining the notion of two-party unilateral message authentication.
Then, we first focus on non-interactive protocols and we will come back to interactive ones
later. Prior proposals of non-interactive protocols such as the folklore protocol from Balfanz
et al. [BSSW02] or the MANA family from Gehrmann-Mitchell-Nyberg [GN04, GMN04] are
not optimal and the latter requires stronger properties on the authenticated channel. In
Section 7.3, we present the first optimal non-interactive protocol, called PV-NIMAP, that
we published in [PV06a]. It ensures the same security level as the one from Balfanz et al.
by using much less authenticated communication. It is based on a trapdoor commitment
scheme either in the CRS or in the RO model. In Section 7.4, we discuss works following the
publication of our protocol. In Section 7.5, we focus on interactive protocols. We will see
that there is no need for further work in interactive unilateral protocols. Indeed, the original
SAS-based protocol from Vaudenay [Vau05b] is already optimal. Finally, in Section 7.6, we
discuss possible applications and particularly the choice between an interactive or a non-
interactive protocol.

101

Sylvain Pasini

7.1 Unilateral Message Authentication Primitive

Unilateral Message Authentication Protocols (UMAP) are typically used to exchange public
keys so that secure communications can be set up. There exists Non-Interactive Message Au-
thentication Protocol (NIMAP) and Interactive Message Authentication Protocol (IMAP).
For a better usability, a NIMAP is preferred in many applications. For more discussion, see
Section 7.6. Remember that we are using the notion of Short Authenticated String (SAS)
introduced by Vaudenay [Vau05b], see Section 4.4.4. We consider that the extra authen-
ticated channel is limited to k-bit strings for each protocol instance. In the following we
consider two parties: a claimant Alice located on node A of identity idA and a verifier Bob
located on node B of identity idB.

Unilateral Message
Authentication Protocol

(UMAP)

Alice Bo

(îdA, m̂A)

mA

Figure 7.1. Unilateral Message Authentication Protocol (UMAP).

Definition 7.1 (Unilateral Message Authentication).
As depicted in Figure 7.1, a unilateral message authentication protocol has input mA on

the side of the claimant, Alice of identity idA, and has output (îdA, m̂A) on the side of the
verifier, Bob.

The run is honest if the output is îdA = idA and m̂A = mA. An attack is successful when
Bob gets as output (îdA, m̂A) and no instance on the node with identity îdA was launched
with input m̂A.

7.2 Prior Work on Non-Interactive Protocols

7.2.1 A CRHF-based NIMAP

SSH, PGP, and GPG all use the same simple protocol in order to exchange public keys
in an authenticated way. This protocol was formalized by Balfanz et al. [BSSW02]. It is
non-interactive and based on a CRHF H. As depicted on Figure 7.2, the protocol consists
in sending the message (or the public-key) over the insecure channel and then in validating
their integrity with the authenticated communication. Here, the authenticated string is
simply the k-bit hashed value of the input message m.

102

Part I Chapter 7 - Two-Party Unilateral Message Authentication

Alice Bob
input: m

m−−−−−−−−−−−−−→
h← H(m)

authidA
(h)

−−−−−−−−−−−−−→ check h
?
= H(m̂)

output: idA, m̂

Figure 7.2. A CRHF-based NIMAP from Balfanz et al.

Note that the authenticated string is constant for all instances of the protocol which
use the same input m, i.e., the authenticated string is H(m). This characteristic allows
adversaries to run offline attacks. An attacker has “simply” to find a collision on the hash
function between two messages m1 and m2 and then succeeds with probability 1.

Here is the corresponding security result from [Vau05b].

Theorem 7.2 (Security of the CRHF-based NIMAP).
Let µ be the overall time complexity of the message authentication protocol in Figure 7.2
using weak authentication. We denote by T , q, and p the time complexity, number of
oracle queries launch, and probability of success of adversaries, respectively.

There is a generic transformation which transforms any adversary into a collision finder
on H whose complexity is T + µq and probability of success is p.

In short, the best known offline attack against this protocol is the collision attack. An
adversary has a probability of success of 1− e− 1

2
T 22−k

by using T hash computations. This
attack clearly succeeds for T = O(2k/2). Collision resistance requires the number of au-
thenticated bits to be at least 160 and cannot be reduced considering offline attacks and
using only weak authentication. So, the fingerprint is not user-friendly despite the trials to
transform the tedious hexadecimal representation into nice word-based representations.

Moreover, note that CRHF are threatened species these days as evidenced by these at-
tacks [BCJ+05, WLF+05, WYY05b, WYY05a, WY05]. For instance, it is possible to forge
two different RSA keys with the same MD5 hash as shown in [LWdW05, LdW05].

7.2.2 A NIMAP with Strong Authentication: MANA

Another type of protocols is the MANA family proposed by Gehrmann, Mitchell, and Ny-
berg [GN04, GMN04]. These protocols are more resistant against offline attacks due to the
randomization of the authenticated string. Indeed, the protocols are based on an universal
one-way hash function family (UOWHF) H. The authenticated value is composed of two

103

Sylvain Pasini

parts: a fresh random key K and the hashed value µ = H(m,K) of the input message m.
So, two executions of the same protocol with the same input message lead to different
authenticated strings.

The MANA family considers devices able to input and output data. They distinguish
devices with limited input capability, like one button to accept or reject, and devices with
elaborated input capability, like a keypad. With the same idea, they distinguish devices
with limited output capability, like one LED to accept or reject, and devices with elaborated
output capability, like a display.

MANA I considers a scenario in which the device on node A has an elaborated output and
a limited input, while the device on node B has a limited output and an elaborated input.
The authenticated channel, or manual channel, lets the user read the displayed message on
device A and then type it on device B. Then, device B outputs accept/reject and the user
copies it back to device A.

MANA II considers a scenario in which both the devices have an elaborated output and
a limited input. The authenticated channel, or manual channel, lets the user read the two
displayed messages, compare them, and if they are equals type accept on both devices.

A formalization of MANA I and MANA II is depicted in Figure 7.3.

Alice Bob
input: m

m−−−−−−−−−−−−−→
pick K ∈u {0, 1}

k
2

Notify data arrival←−−−−−−−−−−−−−
µ← H(m,K)

authidA
(K||µ)

−−−−−−−−−−−−−→ check µ
?
= H(m̂,K)

Accept/reject←−−−−−−−−−−−−−

output: idA, m̂

Figure 7.3. The Formalization of MANA II.

MANA II requires to send the authenticated message on a stall-free channel. Indeed,
using weak authentication, an adversary who gets authAlice(K||µ) has enough time to find a
message m̂ such that µ = H(m̂,K) and to substitutem with m̂. We can only achieve security
with a stronger authenticated channel which achieves stall-free transmissions. However, this
requirement renders the protocol “less non-interactive” by imposing a strong assumption on
the communication model.

Theorem 7.3 (Security of MANA II).
Let π be the protocol of Figure 7.3 using stall-free authentication. Let H be an ε-universal
one-way hash function (UOWHF) family.

104

Part I Chapter 7 - Two-Party Unilateral Message Authentication

The protocol π is (T, qA + qB , qAqBε)-secure where qA (resp. qB) denotes the number
of instances of Alice (resp. Bob).

Remember that k is the size of the authenticated string and the key K and the hash µ have
the same length, i.e., k/2. Hence, even if an adversary has an unbounded computational

power, his probability of success is at most 2−
k
2 .

Proof.
Consider an adversary A in the stand-alone model. The adversary A has no advantage to
send m̂ before it has received m. In addition, A is not able to send m̂ after receiving K||µ
due to the stall-free assumption. Thus, the attacker must select m and m̂ at the same time

and hope that the equality H(m̂,K)
?
= H(m,K) occurs (where K is unknown yet). Clearly,

the assumption on H limits the probability of success to ε.

Now, consider the security in complex settings. Using Theorem 6.8, we can deduce that
the probability of success of an adversary is at most qAqBε.

7.3 An Optimal NIMAP: PV-NIMAP

In this section, we propose a new NIMAP, called PV-NIMAP. Our protocol has the same
security as the one presented by Balfanz et al. [BSSW02] but using less authenticated bits
and without requiring the hash function to be collision-resistant. PV-NIMAP is depicted
on Figure 7.4 and was published in [PV06a]. It is based on a trapdoor commitment scheme
in the Common Reference String (CRS) model or in the Random Oracle model.

In this protocol the input message m is transmitted by sending (c, d) ← commit(Kp,m).
The message can be recovered by anyone using the open function. To authenticate this
message, the hashed value of c is sent over an authenticated channel. We prove that this
protocol is secure with authenticated strings which can be shorter than in the protocol of
Figure 7.2. A non-deterministic commitment scheme is the heart of the protocol since an
attacker cannot predict the c value and thus cannot predict the H(c) value which is the
authenticated one. This renders collision attacks infeasible. Indeed, the best strategy now is
a second preimage attack. As seen before, collision resistant hash functions are threatened
species these days [BCJ+05, WLF+05, WYY05b, WYY05a, WY05], however we hope that
they still resist against second preimage attacks.

Lemma 7.4 (Stand-Alone Security of PV-NIMAP).
Consider the message authentication protocol π depicted in Figure 7.4. We assume that
the function H is (T + µ, εh)-WCR and the commitment scheme is a (T + µ, εc)-trapdoor
commitment scheme in the CRS model (resp. the equivocable random oracle commitment
scheme).

105

Sylvain Pasini

Alice Bob
input: m

(c, d)← commit(Kp,m)
c||d−−−−−−−−−−−−−→ m̂← open(Kp, ĉ, d̂)

h← H(c)
authidA

(h)
−−−−−−−−−−−−−→ check h

?
= H(ĉ)

output: idA, m̂

Figure 7.4. The New (WCR-based) NIMAP: PV-NIMAP.

There exists a (small) constant µ such that for any T the protocol π is (T, εh +εc)-secure
in the stand-alone model.

Recall that the c value is sent through the insecure broadband channel and thus has
not to be minimized. Thus, we can use an εc as small as desired since we can use any
commitment scheme as secure as desired. So, we essentially have a (T, εh)-secure protocol
in the stand-alone model.

Assuming that H is optimally WCR, the best WCR attack using T hash computations has
a probability of success εh ≈ 1−e−T2−k

. So, the adversary needs T = O(2k) to succeed with
a one-shot attack. Thus, using the same amount of authenticated bits as the protocol of
Figure 7.2, our protocol has a better resistance against offline attacks. Equivalently, we can
achieve the same security as the protocol of Figure 7.2, but using only half authenticated
bits, e.g., 80 bits.

An example of possible implementation of our protocol is given in Figure 7.5. We imple-
mented the commitment scheme in the random oracle model and instantiated it with a hash
function.

Alice Bob
input: m

pick r ∈ {0, 1}80
c← R(m‖r) c,m,r−−−−−−−−−−−−−→ check ĉ

?
= R(m̂‖r̂)

h← H(c)
authidA

(h)
−−−−−−−−−−−−−→ check h

?
= H(ĉ)

output: idA, m̂

Figure 7.5. An Example of Instantiation of PV-NIMAP.

Proof.
Consider a T -time adversary A in the stand-alone model against the protocol depicted in

106

Part I Chapter 7 - Two-Party Unilateral Message Authentication

Figure 7.4. A follows the game as depicted in Figure 7.6 in which it runs a man-in-the
middle attack.

Kp

↓
Kp

↓
Kp

↓
Alice A Bob

m←−−−−−−−−
(c, d)← commit(Kp,m)

c‖d−−−−−−−−→ bc‖bd−−−−−−−−→ m̂← open(Kp, ĉ, d̂)

h← H(c)
h−−−−−−−−−−−−−−−−−−−−−−−→

Winning condition: H(ĉ) = h and m̂ 6= m.

Figure 7.6. Game Against PV-NIMAP.

Clearly, the game of Figure 7.6 can be reduced to an adversary who plays a game with a
challenger C as described in Figure 7.7.

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)
m−−−−−−−−→
c‖d←−−−−−−−− (c, d)← commit(Kp,m)
bc‖bd−−−−−−−−→ m̂← open(Kp, ĉ, d̂)

Winning condition: H(ĉ) = H(c) and m 6= m̂.

Figure 7.7. Reduced Game Against PV-NIMAP.

Given c, A has to find a ĉ such that H(ĉ) = H(c). In addition, it must find a d̂ which
opens to m̂ (using ĉ) which is different from the input m. He can of course choose a ĉ either
equal or either different to c. We study the two cases.

Case 1 (ĉ = c). A chooses ĉ equal to c and obviously fulfills the condition H(ĉ) = H(c).
A should find a d̂ that will open to a message m̂ different from m. As depicted in
Figure 7.8, we can reduce A to an adversary against the binding game of Figure 7.4.
We use an algorithm B bounded by complexity µ which plays the binding game with
a challenger D on one side and simulates a challenger for A on the other side at the
same time. Using A and B, we construct an adversary AB which plays the binding
game. Note that AB has a complexity bounded by T + µ.

107

Sylvain Pasini

First, D generates the pair of keys (Kp,KS) and sends Kp to B. B sends it to A and
receives a message m from A. He computes (c, d) using the commit function with Kp

and sends c‖d to A. As assumed, A chooses a ĉ equal to c and also sends ĉ‖d̂ to B. B
can now deduce m̂ using the open function with inputs c and d̂. Finally, B sends all
required values to the challenger D.

A B D

Kp←−−−−−−−− Kp←−−−−−−−− (Kp,Ks)← setup(1λ)
m−−−−−−−−→
c‖d←−−−−−−−− (c, d)← commit(Kp,m)

(ĉ = c)
bc‖bd−−−−−−−−→ m̂← open(Kp, c, d̂)

m‖ bm‖c‖d‖bd−−−−−−−−→ m← open(Kp, c, d)

m̂← open(Kp, c, d̂)
Winning condition: m̂,m 6=⊥ and m̂ 6= m.

Figure 7.8. Reduction to the SB Game (ĉ = c).

Note that B simulates perfectly a challenger for A. Hence, A and AB win their
respective game at the same time. Consequently, both win with the same probability of
success. Recall that the probability of success of an adversary bounded by a complexity
T +µ against the binding game of Figure 7.4 is smaller than εc when the commitment
scheme is a (T + µ, εc)-trapdoor commitment scheme (see Section 3.5.8). Hence, the
probability that A succeeds and c = ĉ is at most εc. Note that this case equally applies
to equivocable random oracle commitment schemes (see Section 3.5.9.2).

Case 2 (ĉ 6= c). A searches a ĉ different from c. As depicted on Figure 7.9, we can reduce
A to an adversary against a second preimage search game. We use an algorithm B
bounded by a complexity µ with the help of one query to the equivocate oracle. B plays
the second preimage game with a challenger D on one side and simulate a challenger
for A on the other side at the same time. Using A and B, we construct an adversary
AB which plays the second preimage game with D. Note that AB has a complexity
bounded by T + µ.

First, B generates the keys and sends Kp to A. B receives a message m from A and
receives a challenge c from C. B can deduce the decommit value d by calling the
oracle equivocate(m, c). Note that c has been picked uniformly and consequently the
distribution of (c, d) is the same as if they have been yield by the commit algorithm.
Then, B can send c‖d to A. A sends a ĉ‖d̂ to B. Finally, B sends it to the challenger
D.

Note that B simulates perfectly a challenger for A. Hence, A and AB win their re-
spective game at the same time and consequently with the same probability of success.
Recall that the probability of success of an adversary against a second preimage game

108

Part I Chapter 7 - Two-Party Unilateral Message Authentication

A B D

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)
m−−−−−−−−→

c←−−−−−−−− pick c ∈u C
c‖d←−−−−−−−− d← equivocate(Ks,m, c)
bc‖bd−−−−−−−−→ m̂← open(Kp, ĉ, d̂)

bc−−−−−−−−→
Winning condition: H(ĉ) = H(c) and m 6= m̂.

Figure 7.9. Reduction to the WCR Game (ĉ 6= c).

bounded by a complexity T + µ is smaller than εh when H is a (T + µ, εh)-WCR
hash function (see Section 3.2.2). Hence, the probability that A succeeds and c 6= ĉ
is at most εh. Note that the proof equally applies to equivocable oracle commitment
schemes since it is unlikely that the challenge c was output by a commit oracle.

We conclude that any T -time adversary in the stand-alone model against the protocol
of Figure 7.4 has a probability of success smaller than εc + εh when the protocol uses a
(T + µ, εh)-WCR hash function H and a (T + µ, εc)-trapdoor commitment scheme.

We consider now more powerful adversaries and we consider the security in complex
settings.

Theorem 7.5 (Security of PV-NIMAP).
Consider the message authentication protocol π depicted in Figure 7.4. We assume that
the function H is (T + µ, εh)-WCR and the commitment scheme is a (T + µ, εc)-trapdoor
commitment scheme in the CRS model (resp. the equivocable random oracle commitment
scheme).

There exists a (small) constant µ such that for any T the protocol π is (T, qA+1, qA(εh+
εc))-secure where qA denotes the number of instances of Alice.

Assuming that WCR hash functions and trapdoor commitments such that εc ≪ εh and
εh = O(T2−k) exist, we have p = O(qAT2−k). As an example, assuming that an adversary
is limited to qA ≤ 210, T ≤ 270, and that the security level requires p ≤ 2−20, the protocol
of Figure 7.2 requires k ≥ 160 while our protocol PV-NIMAP only requires k ≥ 100.

Even though collisions on MD5 have been found [WY05], using MD5 [Riv92], our protocol
PV-NIMAP still achieves a quite luxurious security since we only need resistance to second

109

Sylvain Pasini

preimages only. However, the protocol of Figure 7.2 is insecure.

Remember from Chapter 5 that any NIMAP cannot be secure unless T · qA is negligible
against n. Here, n is equal to 2k. Thus, our proposed protocol is optimal provided that
WCR hash functions and trapdoor commitment schemes such that εc ≪ εh = O(T2−k)
exist. By comparison with our protocol, we can note that the protocol of Figure 7.2 is not
optimal.

Proof.
Recall from Lemma 7.4 that any adversary bounded by a complexity τ in the stand-alone
model has a probability of success at most εh + εc.

Consider any adversary who launches qA instances of Alice and qB instances of Bob.
Clearly, we can simulate all instances of Bob, pick one who will make the attack succeeds,
and launch only this one. Hence, we reduce to qB = 1. We have T = τ +O(qB).

Using Theorem 6.8, we conclude that any adversary has a probability of success at most
qA(εh + εc).

7.4 Following Works

After the publication of the above contribution, i.e., PV-NIMAP, some work was done on
this area. So, we briefly present them.

An HCR-based NIMAP. Mashatan and Stinson [MS07, Mas08] studied generic NIMAP
security. They concluded that in a chosen-message adversarial model, the security of a
NIMAP relies on some binding property between the data sent over the insecure channel
and the authenticated string. Clearly, an adversary trying to attack a NIMAP protocol
is equivalent to an adversary trying to attack a Hybrid-Collision Resistant (HCR) hash
function. So, they defined HCR hash functions as follows: a function H is (T, ε)-HCR if
any adversary A bounded by complexity T wins the HCR game with probability at most
ε. The HCR game lets the adversary to choose a message m ∈ {0, 1}ℓ1 , then a challenger
chooses a random K ∈ {0, 1}ℓ2 , and finally the adversary gives a L ∈ {0, 1}ℓ1+ℓ2 and wins if
L 6= m‖K and H(m‖K) = H(L). The final protocol [MS07, Mas08] based on a HCR hash
function is depicted in Figure 7.10.

Here is the corresponding security result from [Mas08].

Theorem 7.6 (Security of the HCR-based NIMAP).
Let H be a (T, ε)-HCR hash function. The protocol depicted in Figure 7.10 is (T, q+1, qε)-
secure.

110

Part I Chapter 7 - Two-Party Unilateral Message Authentication

Alice Bob
input: m ∈ {0, 1}ℓ1

pick K ∈u {0, 1}ℓ2
m,K−−−−−−−−−−−−−→

h← H(m‖K)
authidA

(h)
−−−−−−−−−−−−−→ check h

?
= H(m̂‖K̂)

output: idA, m̂

Figure 7.10. An HCR-based NIMAP.

For the same security level, this protocol requires the same amount of authenticated data,
i.e., k ≥ 100, by using a large enough ℓ2, i.e., ℓ2 ≥ 80. As advantage, this protocol does
not use any commitment scheme and requires no public parameters. One may note that the
HCR definition is very close to the eTCR one, see Section 3.2.5.

An eTCR-based NIMAP. Reyhanitabar et al. [RWSN07] do a similar work as Mashatan
and Stinson [MS07, Mas08], and quite at the same time.

As depicted in Figure 7.11, they propose a protocol based on an eTCR hash function, see
Section 3.2.5.

Alice Bob
input: m

pick K ∈u {0, 1}k m,K−−−−−−−−−−−−−→
h← H(m,K)

authidA
(h)

−−−−−−−−−−−−−→ check h
?
= H(m̂, K̂)

output: idA, m̂

Figure 7.11. An eTCR-based NIMAP.

Here is the corresponding security result from [RWSN07].

Theorem 7.7 (Security of the eTCR-based NIMAP).
Let H be a (T, ε)-eTCR hash function. The protocol depicted in Figure 7.11 is (T − µq −
σ, q + 1, qε)-secure where µ is the maximal complexity of Alice and σ the complexity for
a H computation.

Note that Reyhanitabar et al. also propose a practical implementation of the eTCR hash
function by using the Merkle-Damg̊ard hash construction [Dam90, Mer90] and by using
SHA1 [SHA95] in a randomized hashing mode as compression function. For the same security

111

Sylvain Pasini

level as PV-NIMAP, this protocol requires a SAS length of k = 100 + log2(L+ 2) where L
is the block length in their eTCR construction (blocks are 512-bit long by using SHA1).

7.5 On Interactive Protocols

The Original SAS-based IMAP: Vau-SAS-IMAP. Another interesting unilateral protocol
is the one from Vaudenay [Vau05b], here called Vau-SAS-IMAP. Due to interactivity, this
protocol avoids offline attacks. Indeed, after the exchange of the three messages through the
insecure channel, Alice has to authenticate a short string SAS = RA ⊕ RB where RA and
RB were randomly selected at the beginning by Alice and Bob respectively. Note that the
SAS is independent of the message m, but only depends on the fresh RA and RB , and thus
no offline attack is possible. The protocol is depicted in Figure 7.12.

Alice Bob
input: m

pick RA ∈u {0, 1}k pick RB ∈u {0, 1}k
(c, d)← commit(m,RA)

m,c−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−
d−−−−−−−−−−−−−→ R̂A ← open(m̂, ĉ, d̂)

SAS← RA ⊕ R̂B

authidA
(SAS)

−−−−−−−−−−−−−→ check SAS
?
= R̂A ⊕RB

output: idA, m̂

Figure 7.12. The Original SAS-based IMAP: Vau-SAS-IMAP.

Vaudenay [Vau05b] proves that an adversary in the stand-alone model has a probability
of success at most 2−k + ε where ε ≥ 0 represents a small advantage for attackers due to a
non-perfect commitment scheme (non perfectly hiding).

Here is the corresponding security result from [Vau05b]

Theorem 7.8 (Stand-Alone Security of Vau-SAS-IMAP).
Assume a commitment scheme which is either (T, ε)-extractable or (T, ε)-equivocable.

There exists a (small) constant µ such that the protocol depicted in Figure 7.12 is (T +
µ, 2−k + ε)-secure in the stand-alone model.

This protocol also resists against general attacks run by any adversary bounded by a
number of protocol runs, i.e., the online complexity. As before, by using Theorem 6.8.
we deduce that attacks which use qA instances of Alice and qB instances of Bob have a
probability of success against this protocol at most qAqB(2−k + ε).

112

Part I Chapter 7 - Two-Party Unilateral Message Authentication

Theorem 5.3 tells us that the security of the protocol of Figure 7.12 is optimal among
all comparable protocols since it reaches the maximal security for a message authentication
protocol and there cannot exists a better protocol using the same amount of authenticated
bits.

Using the previous example, assuming that an adversary is limited to qA ≤ 210, T ≤ 270,
and that the security level requires p ≤ 2−20, the optimal IMAP protocol of Figure 7.12
requires k ≥ 50 while our optimal PV-NIMAP requires k ≥ 100. We clearly see the gap
between IMAP and NIMAP efficiency with respect to the amount of authenticated data.

An ICR-based IMAP. Recently, Mashatan and Stinson [MS08, Mas08] proposed a new
interactive protocol. However, this protocol is not in the same adversarial model than we
use in this thesis. Indeed, they consider offline complexity as the computational complexity
before the target instance is launched and the online (computational) complexity as the
computational complexity while the target instance is running. In other words, they limit
the online computational complexity which leads to a different adversarial model.

We briefly present their protocol in Figure 7.13 with no additional detail. The protocol
is based on an Interactive-Collision Resistant (ICR) hash function, see [MS08, Mas08] for
more details.

Alice Bob
input: m

pick K ∈u {0, 1}ℓ2
m,K−−−−−−−−−−−−−→

R←−−−−−−−−−−−−− pick R ∈u {0, 1}ℓ3

SAS← H(m‖K‖R̂)
authidA

(SAS)
−−−−−−−−−−−−−→ check SAS

?
= H(m̂‖K̂‖R)

output: idA, m̂

Figure 7.13. An ICR-based IMAP.

By letting the same security parameters as before, this protocol requires k ≥ 30, resp.
k ≥ 50, authenticated bits when the online computational complexity is ton = 210, resp.
ton = 230.

Note that this protocol only uses two moves over the insecure channel (in a special ad-
versarial model) while Laur and Nyberg [LN06b, Corollary 1, Appendix B] showed that the
minimal number of rounds is three (in the usual adversarial model), see Section 5.7.

113

Sylvain Pasini

7.6 Applications

Unilateral SAS-based message authentication protocols can typically be used where public-
key cryptography is needed, and consequently where authentication of a public key is re-
quired. For instance,

• distant host authentication, e.g., SSH,

• e-mail authentication, e.g., GPG signature,

• secure e-mail, e.g., GPG encryption,

• secure voice over IP, e.g., PGPfone.

Another possible application can be authentication of legal documents. For instance, if
two persons would exchange a document with no complex appendix, such as GPG signature,
they can simply use one of the above protocols.

One may balance the advantages of a non-interactive unilateral message authentication
protocol with respect to an interactive one, and vice-versa:

Usability. An interactive protocol allows shorter authenticated strings and thus is more
user-friendly. However, an interactive protocol forces the participants to be synchro-
nized and in some applications may be less user-friendly.

Cost. In terms of amount of authenticated bits, interactive protocols have a lower cost since
they do not have to resist against offline attacks and thus can use shorter SAS. An
exception is MANA. Indeed, it is a non-interactive protocol using only few authenti-
cated bits. On the other hand, it requires a stronger authenticated channel which is
more expensive than a weak authenticated one.

Security. We saw that both non-interactive and interactive protocols are vulnerable against
active attacks. However, only the non-interactive protocols are vulnerable against
offline ones.

Fortunately, each type has advantages and inconvenients. The selection should be done by
the designer with respect to the target application.

SSH. Users connect to SSH servers. Usually, the authentication of the server is done
by authenticating its public key while the authentication of the client is done by giving a
username-password (after the secure tunnel is established).

So, the authentication of the public key is of utmost importance. Most of the time,
the authentication of the distant public key is made by comparing the fingerprint computed

114

Part I Chapter 7 - Two-Party Unilateral Message Authentication

locally with the distant fingerprint which is obtained from the SSH server in an authenticated
way. One advantage of this approach is the non-interactivity. Indeed, we cannot suppose
that there is someone that will give to the users their personal SAS in order to authenticate
the server public-key. Clearly, an interactive protocol is not a good choice.

PGP, GPG. These two applications actually use a message authentication protocol to
authenticate public keys. The used protocol is non-interactive. Consequently, it allows
two distant users to run a non-synchronized authentication. On the other hand, they must
authenticate a long string, e.g., 160 bits (often represented with nice words).

An interactive protocol may be used for peer-to-peer key authentication as we will see in
Section 7.6. Here, we assume that two distant users can run a synchronized protocol. The
interactivity has the advantage of allowing shorter SASs.

PGPfone. PGPfone is a software package allowing transform a computer into a secure
telephone. Suppose two persons want to communicate securely, i.e., Bob calls Alice. A
possible scenario can be to start with a non-secure communication. If Bob knows Alice,
the non-secure communication is an authenticated channel. Thus, Alice can send its public
key to Bob, e.g., using another TCP port or by email, and then she can authenticate their
public key by spelling its fingerprint. After this authentication step, the two users can setup a
secure communication by using the public key which has just been exchanged. Clearly, both
users are eventually synchronized, thus an interactive protocol can be run simultaneously
on another TCP port with no additional constraint. This interactive method would allow
shorter SASs.

Bluetooth Devices Pairing and Wireless USB. An alternative method to Bluetooth pair-
ing can be to exchange a public key and then authenticate it. Note that a pairing requires
all devices available at the same time. Consequently, an interactive protocol requires no
additional constraint. Thus, short SAS can be used to authenticate public keys. For small
devices, this can be restrictive since costly commitment schemes can be hard to implement.
Recall that protocol of Figure 7.12 requires a commitment scheme.

Wireless USB, or any similar standard, will appear soon. Some USB devices, such as
printers, will become wireless. As for Bluetooth, a WUSB device requires a pairing step
otherwise attacks may be run. Let us consider some applications. We do not focus on the
implementation of the authentication protocol, but rather on the user interface.

A headset has no keyboard and no display. A solution to exchange the SAS would be that
the ear-phone pronounces the SAS and then the user types it on the telephone keyboard.

To establish a security association with a computer keyboard, the users could simply type
on his keyboard a SAS displayed on the screen of the computer. Here, we consider that

115

Sylvain Pasini

display–user–keyboard is an authenticated channel. Note that our protocol does not need
confidentiality on the channel to transmit the SAS, unlike a PIN code.

When a user on the road would like to print a confidential document from his laptop
computer to a wireless printer, authentication of the printer is necessary. In the case where
the printer has a display, it is not a problem: the printer just displays the SAS which should
be then typed on the laptop. Otherwise, the printer can still print the SAS on a page. The
protocol can be interactive in this case to allow short SAS.

A hard disk has in general no input and no output with the user. Here are some alternate
ways for “deaf-mute” devices:

1. Start with a wired connection to setup a security association.

2. “Hard-code” a key on the device and print them on its box. The user has to type it
on its computer during the authentication step.

3. Use resurrecting duckling paradigm from Stajano-Anderson [SA99]. In short, when
a device is booted the first time, it searches another device in its vicinity and then
always trusts the first one found.

4. Use a distance bounding authentication (see Section 2.5.2) which is well adapted in
this case since we are doing pairing of near by devices.

A Peer-To-Peer File Authentication

It seems reasonable to assume that two users can be available during the exchange of a
message, e.g., a public key. In this section, we propose a peer-to-peer application that helps
to authenticate files.

The application communicates through the Internet network (the insecure channel). In
addition, they need a human communication channel, typically a telephone (the authenti-
cated channel). The application is based on the client-server model and works as follow:
Suppose Bob wants to receive an authenticated file from Alice. Bob launches the SAS File
Exchange application and waits for a connection (i.e., he is the server). Then, he contacts
Alice and asks her to authenticate one of her files. Alice launches the application too, selects
the file and the destination address, and starts the protocol (i.e., she is the client). At the
end both should check by telephone that the two SASs they have matches.

The Vaudenay SAS-based authentication protocol, called Vau-SAS-IMAP and depicted in
Figure 7.12, has been adapted and the implemented version is depicted in Figure 7.14.

Note that if Alice and Bob have already exchanged the file, e.g., by email, only authen-
tication is made. Otherwise, i.e., mB = ⊥, the file is exchanged at the beginning of the
protocol.

116

Part I Chapter 7 - Two-Party Unilateral Message Authentication

Alice Bob
input: m input: mB

Wait for connection...
open connection−−−−−−−−−−−−−→

file request←−−−−−−−−−−−−− file request←
{

1 if mB =⊥
0 otherwise

if file request = 1 then ask Alice

answer←
{

1 if she accepts
0 otherwise

answer−−−−−−−−−−−−−→
if answer = 0 then abort if answer = 0 then abort

m (if file request=1)−−−−−−−−−−−−−→ m̂B ←
{
m̂ if mB =⊥
mB otherwise

pick RA ∈u {0, 1}k
pick Rdm ∈u {0, 1}80

c← SHA1(m||RA||Rdm)
c−−−−−−−−−−−−−→

RB←−−−−−−−−−−−−− pick RB ∈u {0, 1}k
RA−−−−−−−−−−−−−→

Rdm−−−−−−−−−−−−−→
SAS← RA ⊕ R̂B

authidA
(SAS)

−−−−−−−−−−−−−→ check ĉ
?
= SHA1(m̂B ||R̂a||R̂dm)

check SAS
?
= R̂A ⊕RB

output: Alice, m̂B

Figure 7.14. Implementation of Vau-SAS-IMAP with the Random Oracle Commitment.

117

Sylvain Pasini

The final application is composed of three windows: The main window is the only one
visible at launch time and allows the user to open one of the two others. The receive window
is typically opened by Bob to start a server, while the send window is opened to send the file
to the destination. Figure 7.15 shows all three windows. In particular, it shows the receive
and send windows in a verbose mode.

Figure 7.15. SAS File Exchange.

At the end of the protocol, Alice should authenticate its displayed SAS by reading it while
Bob types it. We used a six decimal digits SAS, but only five are really used and the last is
used to check the redundancy. This particularity was added in order to allow users to make
mistake(s) without reducing the security. If simply two trials were allowed, any attacker
would have had two trials to attack the protocol. Consequently, the probability of success
would have been twice the probability of success of the original protocol and this is not good.
In our solution when Bob enters a SAS, first the redundancy is checked. If the redundancy
is bad, Bob has entered a non-valid SAS and can try another one (only one). Note that an
attacker has no chance trying to use a SAS with bad redundancy since it would be rejected

118

Part I Chapter 7 - Two-Party Unilateral Message Authentication

with probability 1. If the redundancy is correct, either the SAS entered is correct and also
the file is authenticated, or it is false and the file authentication is aborted since an attack
may have occurred.

The proposed application allows users to exchange files in an authenticated way. It can be
used to exchange PGP or GPG public keys by authenticating only six decimal digits. Note
that the current method uses the protocol of Figure 7.2 (using fingerprints) and requires 160
authenticated bits, e.g., 32 hexadecimal digits. Fortunately, the proposed protocol requires
the exchange of only 15 authenticated bits which is much smaller than the current method.

119

Sylvain Pasini

120

Chapter

EIGHT

Two-party Bilateral Message Authentication

We start this chapter by defining the notion of two-party bilateral message authentication.
Then, we study prior proposals and in particular the original SAS-based bilateral protocol
from Vaudenay [Vau05b]. This protocol enables message cross-authentication by interleav-
ing two unilateral protocols, one in each direction. However, this protocol is not optimal
and there is no formal security proof. In Section 8.3 we propose an optimal protocol, called
PV-SAS-MMA, achieving message mutual-authentication (MMA) while in Section 8.4 we
propose an optimal protocol, called PV-SAS-MCA, achieving message cross-authentication
(MCA). We published both protocols in [PV06b]. Both are provably secure and optimal
with respect to the SAS length and the number of moves. In Section 8.5, we discuss works
following the publication of our protocols. Finally, in Section 8.6, we discuss possible appli-
cations.

8.1 Bilateral Message Authentication Primitives

Any unilateral message authentication protocol can be turned into a bilateral message cross-
authentication protocol. Namely, each party runs a unilateral message authentication proto-
col. However, such kind of construction is in general not optimal with respect to the number
of moves. As well, such a construction may lead to two different SASs while in many ap-
plications we prefer two equal SASs for usability reasons and because some authentication
channels may provide symmetric authentication at no extra cost.

121

Sylvain Pasini

Bilateral message authentication is typically used to agree or to exchange public keys.
Such a protocol can be for instance combined with a key agreement protocol to build an
authenticated key agreement as we will see in Chapter 10. We distinguish two types of
bilateral message authentication: mutual-authentication is used to authenticate the same
message in the two directions while cross-authentication is used to exchange two messages
in an authenticated way. As in the previous chapter, consider two parties: Alice located on
node A of identity idA and Bob located on node B of identity idB.

8.1.1 Message Mutual-Authentication

Message
Mutual-Authentication

(MMA)

Alice Bo

îdA

m m

îdB

Figure 8.1. Message Mutual-Authentication (MMA).

Definition 8.1 (Message Mutual-Authentication).
A Message Mutual-Authentication (MMA) protocol between Alice and Bob starts with

inputs mA and mB and ends with outputs îdB and îdA, respectively.

An honest run should lead to mA = mB, îdB = idB, and îdA = idA.

An adversary is successful if some instance of an uncorrupted node started with any
input m and ended with any output îd such that no instance of the node of identity îd was
launched with input m.

8.1.2 Message Cross-Authentication

(îdA, m̂A)

mA mB
Message

Cross-Authentication

(MCA)

Alice Bo

(îdB , m̂B)

Figure 8.2. Message Cross-Authentication (MCA).

122

Part I Chapter 8 - Two-party Bilateral Message Authentication

Definition 8.2 (Message Cross-Authentication).
A Message Cross-Authentication (MCA) protocol between Alice and Bob starts with inputs

mA and mB and ends with outputs (îdB , m̂B) and (îdA, m̂A), respectively.

An honest run should lead to (îdA, m̂A) = (idA,mA) and (îdB , m̂B) = (idB ,mB).

An adversary is successful if some instance ended of an uncorrupted node with a pair
(m, id) but no instance of the node of identity id was launched with input m.

8.1.3 MCA versus MMA Protocols

Obviously, we can transform an MCA protocol into an MMA protocol by just checking on
both sides that the output message is equal to the input one.

We can also transform an MMA protocol into an MCA protocol at the price of at most
two extra moves: Alice first sends her input message mA to Bob and then Bob sends his
input message mB to Alice. Alice and Bob initiate an MMA protocol with input mA‖m̂B

and m̂A‖mB respectively. If no attack occurred, the final outputs of Alice and Bob are idB

and idA respectively. Note that if the MMA protocol has moves over the insecure channel,
we may combine the two additional moves with them and thus optimize the total number
of moves.

8.2 Prior Work

To compare protocols we focus on the number of messages over the insecure channel and
on the length of authenticated messages. Furthermore, a protocol with two equal SAS to be
sent in both directions (called symmetric SAS) will be considered as better than a protocol
with two not necessarily equal SAS to be exchanged. Indeed, some authentication channels
may provide symmetric authentication at no extra cost.

8.2.1 A Trivial MMA

A trivial MMA protocol consists in authenticating in the two directions the digest of the
input message by using a collision-resistant hash function (CRHF) as depicted in Figure 8.3.

As for the construction in Section 8.1.3, this protocol can be transformed into an MCA
protocol by using two additional moves over the insecure channel to exchange mA and mB.
By authenticating Diffie-Hellman keys, we obtain a 2-move Authenticated Key Agreement
(AKA) protocol with symmetric SAS, but the length of the SAS is quite long, typically 160
bits. More details about AKA are given in Chapter 10.

123

Sylvain Pasini

Alice Bob
input: mA input: mB

SASA ← H(mA) SASB ← H(mB)
authidA

(SASA)
−−−−−−−−−−−−−→ check SASA

?
= SASB

check SASB
?
= SASA

authidB
(SASB)

←−−−−−−−−−−−−−

output: idB output: idA

Figure 8.3. A Trivial MMA Protocol.

Another MMA protocol was proposed by Gehrmann-Mitchell-Nyberg [GMN04]. It is used
in cases where both devices have a keypad and a simple output. In this protocol, the user
is asked to make some computations, as picking a random number or aborting or not the
protocol.

8.2.2 The Original SAS-based MCA Protocol: Vau-SAS-MCA

A SAS-based message cross-authentication protocol was proposed by Vaudenay [Vau05b],
here called Vau-SAS-MCA. It consists in interleaving two SAS-based unilateral message
authentication protocols (depicted in Figure 7.12), one in each direction. It results in a
4-move MCA protocol with symmetric SAS. This may be transformed into a 4-move AKA
protocol with symmetric SAS based on the Diffie-Hellman key agreement (see Chapter 10).

Alice Alice
input: mA input: mB

pick RA ∈u {0, 1}k pick RB ∈u {0, 1}k
(cA, dA)← commit(0‖mA, RA)

mA,cA−−−−−−−−−−−−−→
mB ,cB←−−−−−−−−−−−−− (cB , dB)← commit(1‖mB , RB)

dA−−−−−−−−−−−−−→ R̂A ← open(0‖m̂A, ĉA, d̂A)

R̂B ← open(1‖m̂B , ĉB , d̂B)
dB←−−−−−−−−−−−−−

SAS← RA ⊕ R̂B

authidA
(SAS)

−−−−−−−−−−−−−→ SAS
?
= R̂A ⊕RB

check SAS are the same
authidB

(SAS)
←−−−−−−−−−−−−−

output: idB , m̂B output: idA, m̂A

Figure 8.4. The Original SAS-based MCA Protocol: Vau-SAS-MCA.

124

Part I Chapter 8 - Two-party Bilateral Message Authentication

8.3 An Optimal MMA Protocol: PV-SAS-MMA

The goal is to propose a new MCA protocol improving the number of exchanged messages
compared to the protocol of Figure 8.4. Before presenting the final MCA protocol, we start
with an MMA protocol. Then, we will extend our MMA protocol to build an optimized
MCA protocol. We have published this MMA protocol in [PV06b].

As depicted in Figure 8.5, and without any attack, Alice and Bob start the MMA protocol
with the same message, i.e., mA = mB. Each participant chooses a k-bit random value RA

and RB , respectively. Alice starts by committing on her random value RA by sending c,
keeping RA hidden. Bob sends the random value RB. Then, Alice opens her random RA by
sending the decommit value d. Finally, both authenticate the SAS which has been computed
using a simple XOR function.

Alice Bob
input: mA input: mB

pick RA ∈u {0, 1}k pick RB ∈u {0, 1}k
(c, d)← commit(mA, RA)

c−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−
d−−−−−−−−−−−−−→ R̂A ← open(mB , ĉ, d̂)

SAS← RA ⊕ R̂B

authidA
(SAS)

−−−−−−−−−−−−−→ SAS
?
= R̂A ⊕RB

check SAS is the same
authidB

(SAS)
←−−−−−−−−−−−−−

output: idB output: idA

Figure 8.5. The New SAS-based MMA Protocol: PV-SAS-MMA.

Theorem 8.3 (Stand-Alone Security of PV-SAS-MMA).
Let π be the protocol depicted in Figure 8.5. Assume that we have a (T, ε)-secure equivo-
cable commitment scheme in the CRS model.

There exists a (small) constant µ such that the protocol π is (T − µ, 2−k + ε)-secure in
the stand-alone model.

Proof.
Obtaining authenticated SAS. Any adversary which would attack an instance of either
Alice or Bob needs one SAS to send her/him so that she/he can complete. This required
SAS can easily be obtained from any instance of Alice since she does not need any prior
authenticated message. It can also be obtained from any instance of Bob, but Bob should
receive another SAS before and in addition, if Bob replies, then the output SAS is equal to
the one sent before.

125

Sylvain Pasini

We consider that we have an adversary A with an instance of Alice, denoted by Alice∗

and a target instance, either of Alice or Bob. We assume that the adversary complexity is
bounded by T−µ for some constant overhead µ to be determined by the following reductions.
As depicted in Figure 8.6, we consider two cases: attacks targeting an instance of Bob and
attacks targeting an instance of Alice. In the case both are targets we arbitrarily designate
one as the target. Let pA, resp. pB, be the probability that the target is an instance of
Alice, resp. an instance of Bob. We have pA + pB = 1. Let qA, resp. qB, be the success
probability conditioned to both cases, respectively. The overall success probability of A is
p = qApA + qBpB.

Alice∗ A Target

m∗
A←−−−−−−−−−−−−−
c−−−−−−−−−−−−−→

RB←−−−−−−−−−−−−−
d−−−−−−−−−−−−−→

authid∗
A

(SAS)

−−−−−−−−−−−−−→
Case target Alice

mA←−−−−−−−−−−−−−
c←−−−−−−−−−−−−−

select a “good” RB
RB−−−−−−−−−−−−−→
d←−−−−−−−−−−−−−

authidA
(SAS)

←−−−−−−−−−−−−−

forward
authid∗

A
(SAS)

−−−−−−−−−−−−−→
Case target Bob

mB←−−−−−−−−−−−−−
select a “good” RA

c−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−
d−−−−−−−−−−−−−→

forward
authid∗

A
(SAS)

−−−−−−−−−−−−−→
authidB

(SAS)
←−−−−−−−−−−−−−

Figure 8.6. Alice∗ and the Target Instance (Alice or Bob).

Simulation of Alice∗. In short, we have an adversary A playing with two instances: the
instance of Alice which will give the authenticated SAS denoted by Alice∗ and the target
instance which may be either an instance of Alice or an instance of Bob. In both cases,

126

Part I Chapter 8 - Two-party Bilateral Message Authentication

we define a simulator B that simulates the two instances. B first needs to simulate the
interaction with Alice∗. The simulation works as follows. B first picks a random k-bit
SAS. When Alice∗ is launched by the adversary A, we simulate a commitment c by using
simcommit. Then, the corresponding R̂B is sent to Alice∗, the commit value is equivocated so
that it opens to the key SAS⊕ R̂B . This simulation of Alice is perfect and has the property
to determine the final SAS at the beginning. Note that this instance Alice∗ was simulated
for some input message m∗

A.

Case of a target Alice. Given the SAS from Alice∗, the adversary A tries to pass the
authentication with the target Alice for some message mA 6= m∗

A. In that case, the adversary
A can be transformed in an adversary playing the hiding game against the commitment
scheme. So, algorithm B plays the role of interface. As depicted in Figure 8.7, B simulates
the target Alice for A and at the same time B simulates an adversary playing the hiding
game with a challenger C.

A B C

select SAS
−−−−−−−−→←−−−−−−−−· · ·−−−−−−−−→←−−−−−−−− Simulation of Alice∗ with input m∗

A

mA−−−−−−−−→ mA−−−−−−−−→
c←−−−−−−−− c←−−−−−−−−
· · ·
bRB−−−−−−−−→ RA ← SAS⊕ R̂B

RA−−−−−−−−→
d←−−−−−−−− d←−−−−−−−−
· · ·

Goal: mA 6= m∗
A, open(mA, c, d) = RA

Figure 8.7. Simulator Playing the Hiding Game (case when the target is Alice).

In short, the challenger C will choose a random value RC and commit on it by sending c
to B. The algorithm B forwards the commit value c to the adversary A. The adversary A
tries to find a random R̂B such that R̄A ⊕ R̂B = SAS. Note that R̄A should be the random
value from the target Alice, in this case simulated by B, and thus R̄A is the guessed value
by A given the commit value c on RC . So, A will returns R̂B . B only needs to remove the
SAS from R̂B and forwards it to C. So, when A wins his game, B wins the hiding game.
Since the equivocable commitment scheme is always perfectly hiding, we deduce qA = 2−k.

Case of a target Bob. Given the SAS from Alice∗, the adversary A tries to pass the
authentication with the target Bob for some message mA 6= m∗

A. In that case, the adversary
A can be transformed in an adversary playing the binding game against the commitment

127

Sylvain Pasini

scheme. So, algorithm B plays the role of interface. As depicted in Figure 8.8, B simulates
the target Bob for A and at the same time B simulates an adversary playing the binding
game with a challenger C.

A B C

select SAS
−−−−−−−−→←−−−−−−−−· · ·−−−−−−−−→←−−−−−−−− Simulation of Alice∗ with input m∗

A

mB ,bc−−−−−−−−→ mB ,bc−−−−−−−−→
RB←−−−−−−−− RB ← SAS⊕ R̂A

bRA←−−−−−−−−
· · ·

bd−−−−−−−−→ bd−−−−−−−−→
· · ·

Goal: mB 6= m∗
A, open(mB , ĉ, d̂) = R̂A

Figure 8.8. Simulator Playing the Binding Game (case when the target is Bob).

The idea is the same as in the case with a target Alice. In short, the adversary succeeds
if d̂ decommits to a key which leads Bob to the right SAS, thus to the key R̂A. In that case,
we win the binding game with probability qB = ε.

To summarize, we made an adversary playing either the hiding or either the binding game
with overall probability of success p ≤ 2−k + ε.

Lemma 8.4 (Security of PV-SAS-MMA).
Let π be the protocol depicted in Figure 8.5. Assume that we have a (T, ε)-secure equivo-
cable commitment scheme in the CRS model.

There exists a (small) constant µ such that the protocol π is
(
T − µ, qA + qB, qA(qA +

qB)(2−k + ε)
)
-secure where qA and qB denotes the number of instances of Alice and Bob

respectively.

Proof.
A successful adversary interaction defines the first attacked instance and a prior sequence
initiated by one instance of Alice followed by a chain (possibly empty) of instances of Bob
and ended by the attacked instance. Every (non-attacked) instance of Bob in this sequence is
sending a SAS identical to the received one to the next instance. Every intermediate instance
of Bob terminates with an output message which must be equal to the input message of the
previous instance in the sequence (otherwise, they would be successfully attacked). However,

128

Part I Chapter 8 - Two-party Bilateral Message Authentication

the final instance in the sequence outputs a message which is different from the input of
the previous instance. Hence, every instance in the sequence but the final one has the same
input message and all instances yield the same SAS. Clearly, sending the output SAS from
the leading Alice to the tailing instance produces a successful attack with no intermediate
instance of Bob.

Reduction from several instances to one instance of Alice and one target in-
stance. Let A0 be an adversary who launches at most qA instances of Alice and qB instances
of Bob. We transform it into an adversary A who launches an instance of Alice and a single
target instance (of either Alice or Bob) as follows:

1. A first picks two random numbers I, J such that 1 ≤ I ≤ qA and 1 ≤ J < qA + qB.

2. We initialize counters i and j to 0 and run A0 step by step.

• Every time A0 would like to make a launch query to launch an instance of Alice,
we increment i. If i = I, we really launch it and call the instance π. Otherwise,
we increment j and if j = J , we really launch it and call the target instance π′.
Otherwise, we simulate the oracle call.

• Every time A0 would like to make a launch query to launch an instance of Bob,
we increment j. If j = J , we really launch it and call the target instance π′.
Otherwise, we simulate the oracle call.

• If we have to send a SAS to π, we just simulate the oracle call.

• If we have to send a SAS to π′ and we already got a SAS from π which is equal
to the expected one, we just send it. Otherwise, the attack fails.

Due to the previous discussion, if A0 succeeds, if π′ is the first attacked instance for A0, and
if π is the leading instance of Alice in the sequence, then A succeeds. Hence, the probability
of success of A is at least 1

qA(qA+qB−1) times the probability of success p of A0, i.e.,

Advforge

π (A) ≥ 1

qA(qA + qB − 1)
Advforge

π (A0)

8.4 An Optimal MCA Protocol: PV-SAS-MCA

In this section, we propose a new MCA protocol which is more optimized than the one
depicted in Figure 8.4 proposed by Vaudenay. Indeed, our proposed MCA protocol, called
PV-SAS-MCA improves the number of exchanged messages through the broadband insecure

129

Sylvain Pasini

channel. In addition, we give a formal security proof for it. The proposed MCA protocol is
based on the MMA protocol of the previous section and we also published it in [PV06b].

Our protocol uses an almost strongly universal hash function family h (see Definition 3.7).
In practice, one can use h(x,K) = trunc(hash(K‖x)) where hash is a collision-resistant hash
function (CRHF) and trunc truncates to the leading ρ bits.

As depicted in Figure 8.9, Alice and Bob start the protocol with input mA and mB

respectively. Both Alice and Bob pick a random key denoted by K and R respectively.
Then Alice uses a commitment scheme to commit on her key K and to temporarily keep it
hidden. She sends mA and c to Bob, who replies with mB and R. Now, all random variables
are fixed and Alice can reveal her hidden K by sending d. Finally, they authenticate a string
SAS = R⊕ h(mB ,K).

Note that mB is directly authenticated through the SAS while mA is indirectly authenti-
cated. Indeed, mA is (indirectly) authenticated thanks to the tagged commitment scheme
which binds mA to K and thanks to the direct authentication of K.

Note that in the previous MMA protocol the key K was denoted by RA. Both RA in
the MMA and K in the MCA are picked randomly in a binary set. We replaced RA by K
because now in the MCA protocol it is used as key in the hash function. Unlike the previous
MMA protocol, the committed key K can now be much larger since its length may be now
different from the SAS length.

Note that we added an identity test on Alice’s side to avoid trivial reflection attacks.

Alice Bob
input: mA input: mB

pick K ∈u {0, 1}κ pick R ∈u {0, 1}ρ
(c, d)← commit(mA,K)

mA,c−−−−−−−−−−−−−→
mB ,R←−−−−−−−−−−−−−

d−−−−−−−−−−−−−→ K̂ ← open(m̂A, ĉ, d̂)

SAS← R̂⊕ h(m̂B ,K)
authidA

(SAS)
−−−−−−−−−−−−−→ SAS

?
= R⊕ h(mB , K̂)

check SAS is the same
authidB

(SAS)
←−−−−−−−−−−−−−

check idA 6= idB

output: idB , m̂B output: idA, m̂A

Figure 8.9. The New SAS-based MCA Protocol: PV-SAS-MCA.

For a moment, assume that mA is fixed, i.e., we have a unilateral message authentication
protocol for mB. Then the usage of one-time pad h(m̂B ,K)⊕ R̂ assures that the adversary

130

Part I Chapter 8 - Two-party Bilateral Message Authentication

cannot succeed unless he transfers the commitment ĉ before the decommitment d is released.
But if the adversary just forwards c, then we arrive at the standard XOR-universality game,
where the adversary must find mB 6= m̂B such that h(mB ,K) ⊕ h(m̂B ,K) = R ⊕ R̂ for an
unknown key K ∈u {0, 1}κ. Alternatively, the adversary can try to alter the non-malleable
commitment but this is guaranteed to fail. So, for the same reason, the message mA is also
guaranteed to reach Bob without modifications.

If we do require the two SAS to be independent, we can replace K and R by two vectors
K = (KA,KB) and R = (RA, RB), leading to two independent strings SASA = R̂A ⊕
hKA

(m̂B) and SASB = R̂B ⊕ hKB
(m̂B) to be exchanged and checked. We can easily check

that the result below also applies to this variant.

Theorem 8.5 (Stand-Alone Security of PV-SAS-MCA).
Consider the protocol π depicted in Figure 8.9. Let h be an εasu-almost strongly univer-
sal hash function. Let ℓe, ℓc be the parameters of the equivocable commitment scheme of
Section 3.5.9.2 based on a random oracle H bounded by t queries. Let ε = t22−ℓe + t22−ℓc .

There exists a (small) constant µ such that π is (T − µ, 2−ρ + ε + εasu)-secure in the
stand-alone model.

Hence, this bound is essentially tight and so our protocol is essentially optimal.

Proof.
Let h be an εasu-almost strongly universal hash function family1 with ρ-bit digests, i.e.,
∀a, b, α, β : Pr[k ∈u K : h(a, k) = α, h(b, k) = β] ≤ 2−ρεasu + 2−2ρ. We can replace this
condition by the following two properties:

• h is εar-almost regular with εar = 2−ρ + εasu, see Definition 3.3.

• h is εaxu-almost XOR-universal with εaxu = 2−ρ + εasu, see Definition 3.9.

We define a new character, the flipped Bob, who proceeds as Bob but first issues a SAS
equal to R ⊕ h(mB , K̂) then receives a SAS for verification. In a new protocol, Alice and
the flipped Bob can interact with two crossing SAS exchanges.

The interaction of the adversary with an instance of Alice consists of two steps, i.e., A1

and A2, and the interaction with an instance of Bob as well, i.e., B1 and B2:

A1 sending to Alice her message mA (for the launch query) and getting her commit value
c (for the first send query).

A2 giving her Bob’s alleged message m̂B and random value R̂ and getting her decommit
value d.

1Note that this definition of almost strongly universal hashing is slightly different from [Sti91, Sti94] in
the sense that perfect regularity is not required.

131

Sylvain Pasini

B1 sending him his message mB (for the launch query) and Alice’s alleged message m̂A

and commit value ĉ and getting his random value R (for the first send query).

B2 giving him Alice’s alleged decommit value d̂.

The second step must be performed after the first one, i.e., for Alice first A1 and then A2

and for Bob first B1 and then B2. Alice’s SAS will be equal to R̂ ⊕ h(m̂B ,K) where K is
the result of open(mA, c, d) while the Bob’s SAS will be equal to R⊕ h(mB , K̂) where K̂ is
the result of open(m̂A, ĉ, d̂).

The adversary is successful if the two instances complete and compute the same SAS and
if the input message of at least one instance is different from the output message of the other
instance.

Note that the sending instance and the target instance must be different. Indeed, no
instance of Bob can send a SAS to himself otherwise it would have to be received before
being sent. Similarly, no instance of Alice can accept a SAS coming from herself.

In what follows we show that all cases can be simulated so that we can win a hard game,
proving that the probability of success is at most 2−ρ + ε+ εasu).

On Bob’s incoming ĉ (Step B1). In the random oracle equivocable commitment model,
we only consider the event where no collision occurred. Hence, a commit value ĉ issued by
the adversary for an instance of Bob is either a real output by H and can only be opened in
a single way, or no output from H. In the latter case, we can consider (⊥,⊥,⊥, ĉ) as a new
entry in the H list and count it as an extra oracle call. This way, ĉ can never be opened.
Hence, with probability at least 1− (t+1)(t+2)2−ℓe−1− (t+1)(t+2)2−ℓc−1, which is larger
than 1 − ε, the commit value(s) ĉ from the adversary are either openable in a single fixed
way or not openable. If they are not openable, the adversary fails. If openable ĉ are issued
by an oracle call to H by the adversary, we can thus virtually replace the adversary release
of ĉ by an adversary release of K̂ and step B2 can be ignored. If openable ĉ are issued by
other oracle calls to H, it can only be by a simulation of Alice, leading us to c = ĉ, thus
K̂ = K and mA = m̂A.

Cases Alice-Alice. We denote #2 the instance of Alice whose A2 step is the last. Since
the commitment is perfectly hiding, Alice leaks no information about K(2) (variable K for
Alice #2) until this very last step. Hence, K(2) is independent from the rest and R̂(1) ⊕
R̂(2) ⊕ h(m̂(1)

B ,K(1)) = h(m̂(2)

B ,K(2)) holds with probability at most εar.

Cases Bob-Bob. We denote #2 the instance of Bob whose B1 step is the last one. Those
cases produce no oracle calls to H by Alice, so K̂(1) and K̂(2) are selected by the adversary

132

Part I Chapter 8 - Two-party Bilateral Message Authentication

before the B(2)

1 step. Note that R(1) is already released. The attack succeeds if R(2) =

R(1) ⊕ h(m(1)

B , K̂(1)) ⊕ h(m(2)

B , K̂(2)) where R(2) is independent of the right hand term and
selected at random by the second Bob. Clearly, this succeeds with probability 2−ρ.

Cases Alice-Bob. Without loss of generality, we can assume that B2 is the last step.

In the case A1A2B1B2, R is selected in step B1 so the adversary succeeds with probability
2−ρ.

In the case A1B1A2B2 with c 6= ĉ or in the case B1A1A2B2 (necessarily with c 6= ĉ), the
adversary has no information about K until step A2 and succeeds when R̂⊕R⊕h(mB , K̂) =
h(m̂B ,K). Hence the adversary succeeds with probability at most εar.

In the case A1B1A2B2 with c = ĉ, we must have mA = m̂A. This can only be an attack
for mB 6= m̂B. The adversary has no information about K until step A2 and succeeds when
R̂⊕R = h(mB ,K)⊕ h(m̂B ,K), hence with probability at most εaxu.

With the same proof idea, we can give a proof in the standard model (or CRS model)
instead of in the random oracle model. For that, we do not longer consider an instantiation
of the commitment scheme, but we consider a commitment scheme with generic parameters.
This leads to the following theorem.

Theorem 8.6 (Stand-Alone Security of Generic PV-SAS-MCA).
Consider the protocol π depicted in Figure 8.9. Let h be an εar-almost regular and
εaxu-almost XOR-universal hash function. Let the commitment scheme be (T, εh)-hiding,
(2T, εb)-binding and (T, εnm)-non-malleable

There exists a (small) constant µ such that the protocol π is (T − µ, max {εar, εaxu} +
εh + εb +

√
εb + εnm)-secure in the stand-alone model.

See the article [LP09] for the formal proof.

In Theorem 8.6, we used an equivocable commitment scheme. Such a commitment is
perfectly hiding and εb = 2−ρ. It remains to quantify εb +

√
εb + εnm which was essentially

hidden in the ε. In conclusion, if we compare Theorem 8.5 with Theorem 8.6, then we see
that they claim the same security level.

Lemma 8.7 (Security of PV-SAS-MCA).
Consider the protocol π depicted in Figure 8.9. Let h be an εasu-almost strongly univer-
sal hash function. Let ℓe, ℓc be the parameters of the equivocable commitment scheme of
Section 3.5.9.2 based on a random oracle H bounded by t queries. Let ε = t22−ℓe + t22−ℓc .

There exists a (small) constant µ such that the protocol π is (T − µ, qA + qB, qA(qA −

133

Sylvain Pasini

1 + qB)(2−ρ + ε+ εasu))-secure where qA and qB denotes the number of instances of Alice
and Bob respectively.

By launching q instances of either Alice or Bob with pairwise different input messages and
by picking independent uniformly distributed R̂, all SAS are independent and uniformly
distributed so we have one matching with probability 1−2−qρ ·2ρ!/(2ρ−q)! which is roughly
q(q−1)

2 2−ρ when q ≪ 2
ρ
2 .

Clearly, launching q protocol instances and targeting a success probability p, we should

choose ρ ≈ log2
q2

2p . With the same analysis as in [Vau05b], in a network of N participants,
each limited to R runs of the protocol, and a maximal attack probability at most p, we
should use ρ ≈ log2

N2R2

2p . When p is the probability to attack a target node, we should use

ρ ≈ log2
NR2

2p . Considering a real scenario on a huge network, i.e., with N ≈ 220, q ≈ 210,

and p ≈ 2−10, we obtain ρ ≈ 49 bits. In an ATM-like environment, we can take N = 2,
R = 3, and p = 3 · 10−4, leading us to ρ ≈ 15 bits. In between, we believe that ρ ≈ 20 bits
provides enough security in a small community of human users.

Proof.
We consider an adversary successfully running his attack with many instances of the original
MCA protocol.

We say that a given instance is attacked if it completed the protocol during which a SAS
was received, with an output which is not consistent with the input of the instance who
issued the received SAS. An attacked instance, i.e., the target (either Alice or Bob) must
receive one SAS from a sending instance. Clearly, both instances must agree on the SAS to
complete. Hence, if the SAS sent by the target instance is forwarded to the sending instance
then both instances fully interact.

As in proof of Lemma 8.4, we can reduce an adversary A launching qA instances of Alice
and qB instances of Bob into an adversary A0 launching one instance of each. Due to the
identity check, we avoid reflection attacks and thus there is only qA(qA − 1 + qB) possible
matching pairs.

We can guess the pair of instances with probability 1
qA(qA−1+qB) . Hence, we can simulate

all instances except the two guessed ones. Since the SAS verification phase is the last step
on both instances, there is no trouble to make the two instances exchange their SAS. We
thus transform the initial adversary A with success probability p into an adversary A0 with
success probability at least p

qA(qA−1+qB) .

134

Part I Chapter 8 - Two-party Bilateral Message Authentication

8.5 Following Works

Almost simultaneously to the publication of our proposed MCA protocol depicted in Fig-
ure 8.9, Laur and Nyberg [LN06a] proposed another one, called MANA IV and depicted in
Figure 8.10, with many similar aspects:

• Both protocols send a message digest h(m,K) over the insecure channel instead of the
hash key K. Since the hash key can be arbitrarily long, one can bypass Simmons’s
bounds and achieve the optimal deception probability.

• Nevertheless, we still have to guarantee that the adversary has no access to the key
K before both parties have acquired the common output. Such structural restrictions
are enforced by clever use of a commitment scheme. So, both protocols of Figures 8.9
and 8.10 uses commitments to temporarily hide hash key(s).

But differently from the SAS protocol family, in MANA IV the message pair (mA,mB) is
directly authenticated with the hash function.

Alice Bob
input: mA input: mB

rA ∈u {0, 1}κ rB ∈u {0, 1}ρ
(c, d)← commit(crs, rA)

mA,c−−−−−−−−−−−−−→
mB ,rB←−−−−−−−−−−−−−

d−−−−−−−−−−−−−→ r̂A ← open(crs, ĉ, d̂)

SASA ← h(mA‖m̂B , rA, r̂B)
authidA

(SASA)
−−−−−−−−−−−−−→

authidB
(SASB)

←−−−−−−−−−−−−− SASB ← h(m̂A‖mB, r̂A, rB)

output: idB, m̂B output: idA, m̂A

Figure 8.10. The MANA IV Protocol.

Again, the protocol structure guarantees that the adversary cannot succeed if messages
are transferred abnormally, i.e., m̂B, r̂B arrive before m̂A, ĉ or d̂ is received before m̂B, r̂B .
Now for the normal runs, the adversary has to fix messages m̂A, m̂B before both sub-keys rA
and rB become public. As a result, information theoretical properties of the hash function
are sufficient to guarantee authenticity.

Theorem 8.8 (Stand-Alone Security of MANA IV).
Consider the protocol π depicted in Figure 8.10. Let h be an hash function which is εar-
almost regular w.r.t. sub-keys and εau-almost universal w.r.t. the sub-key rA. Let the
commitment scheme be (T, εh)-hiding, (2T, εb)-binding, and (T, εnm)-non-malleable.

135

Sylvain Pasini

There exists a (small) constant µ such that the protocol π with ℓ-bit SAS is (T −
µ, max {εar, εau}+ 2εh + εb +

√
εb + εnm)-secure in the stand-alone model.

See the article [LN06a] for the formal proof.

Finally, observe that protocols with an optimal deception bound utilize similar techniques.
First, all of them use one-time pad encryption to assure that the adversary preserves the
temporal order between protocol messages. Secondly, the commitment scheme is used as an
additional measure against substitution attacks. Thirdly, it seems that there are no other
designs patterns that could overcome the shortcomings of the MANA I protocol.

8.6 Applications

Applications of such protocols can be traditional key agreement, but run in an ad-hoc way.
For instance, it can be used to exchange PGP public keys to be authenticated by a human-
to-human telephone conversation. It can also be used to secure peer-to-peer Voice over IP
communications as detailed in Section 10.7. Other straightforward applications can be the
Bluetooth-like establishment of symmetric keys between associated wireless devices, e.g., for
wireless USB.

136

Chapter

NINE

Group Message Authentication

We start this chapter by defining the notion of group message authentication. Then, we
study the only prior SAS-based proposal, i.e., Group-MANA IV proposed by Valkonen,
Asokan, and Nyberg [VAN06]. This protocol is not optimal with respect to the number
of moves and in addition it requires the election of a group leader. In Section 9.3 we pro-
pose an optimal group message authentication protocol, called LP-SAS-GMA and published
in [LP08]. We emphasize that there is no need of group leader in our protocol. Finally, in
Section 9.4, we discuss possible applications.

9.1 Group Message Authentication Primitive

The methodology presented in the previous chapters can be naturally extended to a group
setting. However, there are some important differences. First, it is much more difficult to
assure proper temporal order for send and receive events, since there are more events to
be synchronized. Secondly, the set of participants might be determined dynamically during
the protocol execution based on participation. Hence, we must authenticate also the group
description.

We consider n parties involved in the protocol: each party Pi is located in node i and has
identity idi. The n parties form a group G = {id1, . . . , idn}.

There are several important aspects to note:

137

Sylvain Pasini

Ĝj , m̂j

mi mjGroup Message
Authentication

(GMA)Ĝi, m̂i

{Party j}j=1...,i−1,i+1,...nParty i

Figure 9.1. Group Message Authentication (GMA).

First, as said before, a group may be dynamically formed based on the participation in a
group message authentication (GMA) protocol, for example fast setup of ad-hoc military
networks. But then an adversary can always split the group into several subgroups and block
the traffic between the subgroups. As a result, each subgroup agrees on a different output.
Such attacks cannot be defeated unless parties know the description of G in advance, i.e.,
there is some authenticated way to broadcast G.
Second, an adversary may set up several dummy network nodes in order to corrupt commu-
nication or secretly shuffle different groups. Thus, we consider a scenario where a subset G

of all network nodes wants to establish a common message ~m. At the end of the protocol,
either all participants halt or each Pid, id ∈ G obtains values Ĝid and ~̂mid. We allow adaptive
malicious corruption1 of group participants, i.e., at any time during the protocol execution
A can take total control over any node Pid.

Definition 9.1 (Group Message Authentication).
A Group Message Authentication (GMA) protocol with an n-party group G = {id1, . . . , idn}
works as follows: each participant Pidi

starts with input mi and ends with output (Ĝi, ~̂mi)

where ~̂mi = (m̂i,1, . . . , m̂i,n). Let H ⊆ G denote the group of uncorrupted participants at
the end of the protocol.

An honest run should lead to the same group representation and the same output mes-
sages for all (uncorrupted) participants, i.e., ∀idi, idj ∈ H : (Ĝi, ~̂mi) = (Ĝj , ~̂mj).

An adversary is successful if there exists a pair of uncorrupted participants Pidi
,Pidj

such that (Ĝi, ~̂mi) 6= (Ĝj , ~̂mj).

9.2 Prior Work

Note that an authenticated broadcast primitive is sufficient for group message authentication.
Namely, participant Pidi

can first send all messages mi to a leader Pid∗ who then uses the
authentic broadcast primitive to transfer the gathered input ~m∗ = (mi)i∈G and the group

1In many cases, adaptive corruption is impossible, but with our new protocol being secure against adaptive
corruption, it makes no sense to consider weaker models.

138

Part I Chapter 9 - Group Message Authentication

description G to all participants. Next, all other participants Pidj
, idj ∈ G verify that the

received message ~̂m∗ is consistent with their input mj. The protocol is halted if a complaint
is raised over the insecure channels.

The authenticated broadcast primitive itself can be achieved running several unilateral
authentication protocols in parallel. However, the latter automatically increases the number
of different messages over the insecure channels.

Alternatively, we can design specific protocols, where the same insecure message is trans-
ferred to all group members. Although this does not formally decrease the amount of
insecure communication, it makes the protocol more user friendly.

9.2.1 Group-MANA IV

The first specific SAS-based group message authentication protocol was sketched by Valko-
nen, Asokan, and Nyberg [VAN06]. The corresponding protocol, called Group-MANA IV
protocol, is a simple extension of the MANA IV protocol (see Figure 8.10).

Let ~m be the data negotiated between the group of participants G. To ensure that each
participant Pidi

shares the same data ~̂mi, they should authenticate it. Note that Group-
MANA IV is in reality a group message mutual-authentication protocol (and not a group
message cross-authentication protocol). However, it can be transformed with a similar
technique as presented in Section 8.1.3.

To start the protocol, one participant, say Pid1 , is elected as protocol leader. By conse-
quent, the protocol steps are different for the leader than for the other participants. So,
Figure 9.2 represents the execution of the leader Pid1 and an arbitrary Pidi

with i 6= 1.

The corresponding security proof is rather technical and gives no additional insight. For
more details, see [VAN06].

Our SAS-GMA protocol, presented in the following section and depicted in Figure 9.3, is
more round efficient. Remember that in order to transform the protocol of Figure 9.2 into
a group MCA protocol, we should add at least one round over the insecure channel. So, the
gap efficiency between the protocols of Figures 9.3 and 9.2 is even greater than in a first
look.

9.3 An Optimal GMA Protocol: LP-SAS-GMA

This new group message authentication protocol, called LP-SAS-GMA, borrows the ideas
from the Vau-SAS-MCA, depicted in Figure 8.4, and MANA IV, depicted in Figure 8.10.
Both aforementioned protocols use commitment schemes to temporarily hide certain keys.

139

Sylvain Pasini

Pid1 Pidi
, i 6= 1

input: ~m input: ~m

R1 ∈u {0, 1}r Ri ∈u {0, 1}r
broadcast(hi)←−−−−−−−−−−− hi = h(i, Ri)

wait hj1, ∀j 6= 1
hj1←−−−−−−−−−−− hji−−−−−−−−−−−→−−−−−−−−−−−→ wait hji, ∀j 6= 1, j 6= i

broadcast(R1)−−−−−−−−→ R1i−−−−−−−−−−−→ wait for R1i

broadcast(Ri)←−−−−−−−−−−−
wait Rj1, ∀j 6= 1

Rj1←−−−−−−−−−−− Rji−−−−−−−−−−−→−−−−−−−−−−−→ wait Rji, ∀j 6= i

∀j 6= 1 : hj = h(j,Rj1) ∀j 6= i : hj = h(j,Rji)

check ∀j 6= 1 : hj
?
= hj1 check ∀j 6= i : hj

?
= hji

~R1 = (R11, . . . , Rn1) ~Ri = (R1i, . . . , Rni)

SAS1 = f(~m, ~R1)
auth-broadid1

(SAS1)−−−−−−−−−−−→
auth-broadidi

(SASi)←−−−−−−−−−−− SASi = f(~m, ~Ri)

check SASj
?
= SAS1

authidj
(SASj)

←−−−−−−−−−−−←−−−−−−−−−−−
authidj

(SASj)
−−−−−−−−−−−→−−−−−−−−−−−→ check SASj

?
= SASi

output: accept/reject output: accept/reject

Figure 9.2. The Group-MANA IV Protocol.

140

Part I Chapter 9 - Group Message Authentication

Similarly to Vau-SAS-MCA, all sub-keys in our protocol are released after the adversary
has delivered all messages. And similarly to MANA IV, messages mi are sent in clear and
authenticated test values are ℓ-bit hash codes.

Since LP-SAS-GMA is symmetric, Figure 9.3 only specifies the behavior of a single party
Pidi

who wants to participate in the protocol. Here Ĝi denotes the group of participants who

joined Pidi
during the first round before the timeout. Of course, if the group Ĝi is known

beforehand then Pidi
can wait until all other group members have sent their first messages.

Pidi
{Pidj

}
idj∈bGi\{idi}

input: mi input: mj

R1: Pick ri ∈u R
(ci, di)← commit(crs, i, ri)
Wait for (j, m̂ji, ĉji) until timeout

broadcast(i,mi,ci)−−−−−−−−−−−−−−−→
j, bmji,bcji←−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−

R2: Save a description of Ĝi.
∀j : (j, r̂ji)← open(crs, ĉji, d̂ji)
Abort if abnormal behavior

broadcast(di)−−−−−−−−−−−−−−−→
bdji←−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−

SAS: Form ~̂mi, ~̂ri from received m̂ji, r̂ji.

SASi ← H((Ĝi, ~̂mi), ~̂ri)
Abort if some SASj 6= SASi

Output (Ĝi, ~̂mi)

auth-broadcastidi
(SASi)−−−−−−−−−−−−−−−→

authidj
(SASj)

←−−−−−−−−−−−−−−−←−−−−−−−−−−−−−−−

Figure 9.3. The New SAS-based GMA Protocol: LP-SAS-GMA.

For clarity, variables m̂ji, ĉji, d̂ji denote the values from Pidj
that are received by Pidi

. The
hats still indicate a possible modification by an adversary. As for the group descriptions,
the output vector ~̂mi = {∀j : m̂ji} and the sub-key vector ~̂ri = {∀j : r̂ji} are ordered with

respect to sender identities. To be exact, m̂ii = mi, r̂ii = ri and j ranges over Ĝi. Also
note that (i, ri) and (Ĝi, ~̂mi) are shorthands for binary strings that uniquely encode the
corresponding elements.

Implementation Details

The cryptographic requirements for the hash function H and the commitment scheme Com
are formally specified by Theorem 9.2, but there are many other minor details that are not
covered by Figure 9.3.

Assume that the final output (Ĝi, ~̂mi) can always be encoded as an s-bit string. Then,
the hash function H : {0, 1}s ×R∗ → T must support variable number of sub-keys rj, since

141

Sylvain Pasini

the size of the group is variable. For example, we can use a single keyed hash function H1

and some sort of secure combiner to derive a new master key from sub-keys. The restriction
(Ĝi, ~̂mi) ∈ {0, 1}s is not limiting in practice. For instance, we can use a collision resistant
hash function (CRHF) like SHA-256 to compress an encoding of any length to a 256-bit
string.

We will need a hash function that is εau-almost universal and εar-almost regular and could
handle variable number of sub-keys at the same time. A priori, it is not clear that such
hash functions exist. Therefore, we give one possible explicit construction. Let all sub-keys
be from {0, 1}2s and messages from {0, 1}s for a certain integer s which bound the message
space. To hash a message x, we first compute an intermediate key a ← r1 ⊕ · · · ⊕ rn; split
a into two halves a1, a2; interpret x, a1, a2 as elements of the Galois field GF(2s) and define
h(x, r1, . . . , rn) = a1x + a2 over GF(2s). Considering two different inputs x0 and x1, it is

straightforward to verify that a pair h(x0, ~r), h(x1, ~̂r) is uniformly distributed over {0, 1}2s

in the universality experiment. To get shorter hash values, we can output ℓ lowest bits.
Then the hash function has optimal bounds εar = εau = 2−ℓ.

Secondly, we assume that the description of H and the public parameters of Com are fixed
and distributed by a trusted authority.

Thirdly, we assume that a participant Pidi
halts if there is any hint of an attack:

1. some group member halts,

2. there are duplicates (j, m̂ji, ĉji) 6= (j, m̂′
ji, ĉ

′
ji),

3. a sub-key has an invalid form (j, ·) 6= open(Kp, ĉji, d̂ji),

4. some SAS messages do not match.

Another important aspect is secure comparison of SAS messages. In principle, it is
sufficient to deliver a minimal amount of messages so that the participants can detect
SASα 6= SASβ for α, β ∈ G, where G is the set of all active participants of the protocol.
If it is possible to detect all these active nodes, then a single node can broadcast the SAS
message so that the remaining nodes can compare it to their SAS message. For many appli-
cations such as securing conference calls over VoIP, forming Bluetooth piconets and other
wireless device networks, the group is known in advance. Hence, broadcast of a single SAS
message is a viable option. Also note that the group formation can be combined with node
detection in the Bluetooth networks and thus the timeout effect is marginal.

Stand-Alone Security

The security proof for LP-SAS-GMA is straightforward but quite technical. Hence, we
present the proof of Theorem 9.2 in smaller chunks to make it more comprehensible. Note

142

Part I Chapter 9 - Group Message Authentication

that the security level depends linearly on |G| but the constant term max {εau, εar} ≈ 1/ |T | ≈
2−ℓ dominates over the term n·εnm+εb. Therefore, the deception probability asymptotically
approaches the theoretical lower bound 2−ℓ.

Theorem 9.2 (Stand-Alone Security of LP-SAS-GMA).
Consider the protocol π depicted on Figure 9.3. Let n be the maximal size of the group
G. Let H be a multi-keyed hash function which is εau-almost universal with respect to
each sub-key pair and εar-almost regular with respect to each sub-key. Let the commitment
scheme be (T + µ, εb)-binding and (T + µ, εnm)-non-malleable

There exists a (small) constant µ such that π is (T, n · εnm + εb + max {εau, εar})-secure
in the stand-alone model.

Proof.
For the sake of contradiction, we assume a T -time adversary B that violates the bound on
the deception probability, i.e.,

Advforge

π (B) > n · εnm + εb + max {εau, εar} .

Then, we transform B into an adversary A against the non-malleability games Gnm

0 , Gnm

1

depicted in Figures 3.11 and 3.12. Clearly, we have

Advnm(A) = |Pr [Gnm

0 = 1]− Pr [Gnm

1 = 1]|
= |Pr [Gnm

0 = 1|A1 6= ⊥]− Pr [Gnm

1 = 1|A1 6= ⊥]| · Pr [A1 6= ⊥] .

The exact reduction is depicted in Figure 9.4. It will be explained further in Lemma 9.3 and
in Lemma 9.4, but here, we just note that A1 simulates an instance π of the SAS-GMA
protocol for B so that A2 can compute the predicate “B succeeds in deception” in the
non-malleability game.

More precisely, A1 replaces the commitment ck of Pk by the challenge commitment c ←
commit(crs, k, r) for r ∈u R. As A1 can pass information to A2 only via the commitment

vector ~̂c and the advice σ, then the predicate “B succeeds in deception” must be computable

from σ, ~̂c and the corresponding decommitment vector ~̂d. The latter is only possible if Pk is
the last honest party to release his decommitment value dk, see Lemma 9.4. A1 must choose
k randomly from the group G provided by B after seeing crs and guess that it is the right
one. Lemma 9.3–9.5 establish

Advnm

Com(A) = |Pr [Gnm

0 = 1|A1 6= ⊥]− Pr [Gnm

1 = 1|A1 6= ⊥]| · Pr [A1 6= ⊥]

≥ (1−max {εau, εar}) ·
1

n
(Advforge

π (B)− εb)

≥ 1

n
(Advforge

π (B)− εb)−
1

n
·max {εau, εar}

> εnm .

143

Sylvain Pasini

As the working time of (A1,A2) is T + 2τ +O(n) = T +O(1) where τ is the working time
of the honest parties, we have reached a desired contradiction.

Lemma 9.3 (Stand-Alone Security of LP-SAS-GMA (Part 1)).
The sub-adversary A1 described below satisfies Pr [A1 6= ⊥] ≥ 1

n · (Advforge

π (A) − εb) and
the challenger C never halts unless A1 = ⊥.

Proof.
The sub-adversary A1 sketched in Figure 9.4 first forwards crs to B who replies with G and
~m. Hence, A1(crs) can choose k ∈u G and send to C a description of the uniform distribution
over {k} × R as MGen.

Clearly, A1 simulates the execution of the protocol π. It starts by choosing the protocol
inputs ~m and then follows the protocol specifications. Note that A1 simulates the trans-
mission of messages over the insecure channel. Indeed, these messages are routed via the
active adversary B and may be modified. So, A1 sends the protocol messages to B and
receives (possibly modified) messages from B. For instance, these active attacks are illus-
trated in Figure 9.4 by a message (i,mi, ci) sent by the participant Pi (simulated by A) to
all other participants in the group G. Then, the parties Pj (simulated by A too) will receive
(i, m̂ij , ĉij) indicating that it was sent by Pi, the hat indicates that it transited through the
adversary B, and finally was received by Pj . If B corrupts Pi, then A1 gives the control over
Pi to B as in the real execution of π (if Pk is corrupted then dk must be released).

To be more precise, the simulation of π follows the specification of the SAS-GMA except
for computing ck, dk. Indeed, given c from the challenger C, the sub-adversary A1 will use
it in the simulation of π so that ck ← c and collect all messages received by all nodes in G.
The simulation continues until Pk must release dk. To proceed, A1 passes all variables that
are needed to compute the predicate “B succeeds in deception” to C:

1. Compute sets I = {(j, i) : ĉji 6= c} and J = {(j, i) : ĉji = c}.

2. Send σ to C where σ contains the sets I,J ,G, all observed m̂ji, and the current H.

3. Send all plausible commitments ~̂c = (ĉji) for (j, i) ∈ I to C.

Then the challenger C releases d, and A1 continues the simulation of π with dk ← d until
the end or it halts if one of the following failure events occur:

F1: The adversary B fails in deception.

F2: A double opening is revealed: ⊥open(crs, c, d) 6= open(crs, c, d̂ji) 6= ⊥.

F3: The node Pk is not the last honest node to reveal the decommitment.

144

Part I Chapter 9 - Group Message Authentication

B A C

crs←−−−−−−−
G, ~m−−−−−−−→

Choose k ∈u G

MGen← {k} × R
A1(crs)

crs←−−−−−−−
MGen−−−−−−−→

crs← setup(1λ)

(i,mi,ci)←−−−−−−−←−−−−−−−
(i, bmij ,bcij)−−−−−−−→−−−−−−−→

di←−−−−−−−←−−−−−−−
bdij−−−−−−−→−−−−−−−→

Simulate π for G:
⋄ set inputs to ~m
⋄ follow the specifications
⋄ let ck ← c
If dk is required,

pass all variables to A2

through σ and ~̂c
A1(c)

c←−−−−−−−

σ,b~c−−−−−−−→

x0, x1 ← {k} × R
(c, d)← commit(crs, x0)

di←−−−−−−−←−−−−−−−
bdij−−−−−−−→−−−−−−−→

⋄ let dk ← d and continue.
halt if F1 ∨ F2 ∨ F3

A1(d)

d←−−−−−−−

b~d−−−−−−−→

Compute
Ĝi, ~̂ri, ~̂mi,SASi i ∈ H

Output out = 0 if either:
⋄ ∀γ ∈ H :

G 6⊆ Ĝγ

⋄ ∃α, β ∈ H :
SASα 6= SASβ

⋄ ∀α, β ∈ H :
(Ĥα, ~̂rα)=(Ĥβ , ~̂rβ)

else out = 1

A2(·)

σ, xb , b~y

←−−−−−−−

out−−−−−−−→

ŷji ← open(crs, ĉji, d̂ji)

Output out

Figure 9.4. Reduction to the NM Game Gnm

b for b ∈ {0, 1}.

145

Sylvain Pasini

By this construction, we have Pr [¬F1] = Advforge

π (B). As well, we have Pr [F2] ≤ εb or
otherwise A1 can be used to defeat the binding property of the commitment scheme.

Note that B cannot succeed if it corrupts all nodes. So, without loss of generality, we
assume that H 6= ∅. If Pk is the last honest node that releases dk, then the simulation is
perfect. Clearly, we have Pr [¬F3] = 1

|G| . The latter is true even if ¬F1 and ¬F2. We finally
obtain

Pr [A1 6= ⊥] = Pr [¬F3|¬F1 ∧ ¬F2] · Pr [¬F1 ∧ ¬F2] ≥
1

n
· (Advforge

π (B)− εb) .

Finally, note that C halts only if some d̂ji is an invalid decommitment value but then B fails
also in the simulation of π and A1 = ⊥.

Lemma 9.4 (Stand-Alone Security of LP-SAS-GMA (Part 2)).
If A1 6= ⊥ in the game Gnm

0 , then A2 described below correctly recovers the end state of the
simulation and thus Pr [Gnm

0 = 1|A1 6= ⊥] = 1.

Proof.
Assuming that A1 6= ⊥, then the simulation conducted by A1 ended with a successful
deception.

A2 is in charge to determine if the predicate “B succeeds in deception” holds or not.

As Pk was indeed the last honest node to release dk, then m̂ji, r̂ji for indices (j, i) ∈ I ∪J
are sufficient to recover all SAS messages computed by H. All observed m̂ji are trivially

recoverable from σ. By the construction, ŷji = open(crs, ĉji, d̂ji) = (j, r̂ji) for (j, i) ∈ I so

the r̂ji are available from the ŷji. Since F2 cannot happen, open(crs, ĉji, d̂ji) will open to
the same message for all (j, i) ∈ J , i.e., open(crs, c, d) = x0. As a result, A2 can compute

all ~̂mi and ~̂ri for i ∈ H by setting (k, rkk) ← x0 and replacing open(crs, ĉji, d̂ji) calls with

appropriate values specified above. Then it remains to restore SASi ← h((Ĥi, ~̂mi), ~̂ri) for
i ∈ H, to test SASα = SASβ for all α, β ∈ H, and to output 1 in case of deception. Recall

that deception happens only if the test values SASα match but some (Ĝα, ~̂mα) 6= (Ĝβ, ~̂mβ)

and G ⊆ Ĝα.

As A2 computes the predicate “B succeeds in deception” and since A1 6= ⊥ implies ¬F1,
we have Pr [Gnm

0 = 1|A1 6= ⊥] = 1.

Lemma 9.5 (Stand-Alone Security of LP-SAS-GMA (Part 3)).
Let A2 be as described in Lemma 9.4. Then we can bound the conditional probability
Pr [Gnm

1 = 1|A1 6= ⊥] ≤ max {εau, εar}.

146

Part I Chapter 9 - Group Message Authentication

Proof.
Assuming that A1 6= ⊥, then the simulation conducted by A1 ended with a successful
deception. Consequently, c = commit(crs, k, rk) = commit(crs, x1) could have been broadcast

only as ĉki, otherwise B would have failed in deception. Therefore, I ⊆ {k} ×H, Ĝi, ~̂mi,

and all components of ~̂ri except r̂ki for i ∈ H are fixed when A2 starts. Next, we bound the
probability SASα = SASβ for all α, β ∈ H.

Consider the authentic broadcast of ck first, i.e., the case I = {k} × H. The condition

¬F1 implies (Ĝα, ~̂mα) 6= (Ĝβ, ~̂mβ) for some α, β ∈ H. As x1 ∈u {k} × R, the universality of
H with respect to all sub-key pairs2 yields

Pr [r̂k∈u R : H((Ĝα, ~̂mα), . . . , r̂k, . . .)=H((Ĝβ , ~̂mβ), . . . , r̂k, . . .)] ≤ εau

where “. . .” denote the fixed components of ~̂rα and ~̂rβ. So, we have obtained

Pr [A2 = 1|I = {k} ×H] ≤ Pr [SASα = SASβ|I = {k} ×H] ≤ εau .

In the remaining case, let H0 be the set of honest nodes that receive ck, i.e., I = {k}×H0.

Since there is a compulsory node γ such H ⊆ G ⊆ Ĝγ there are nodes α ∈ H0 and β ∈ H\H0

such that A2 compares SASα and SASβ. Moreover, α, β, and SASβ are fixed before x1 is
revealed and almost regularity with respect to all sub-keys provides

Pr [r̂k ∈u R : H((Ĝα, ~̂mα), . . . , r̂k, . . .) = SASβ] ≤ εar

where “. . .” denote the fixed components of ~̂rα. Therefore, we have proved the desired claim,
i.e., Pr [Gnm

1 = 1|A1 6= ⊥] ≤ max {εau, εar}.

Security in Complex Settings

As an informal result, we give the overall security of our LP-SAS-GMA depicted in Figure 9.3.

Theorem 9.6 (Security of LP-SAS-GMA).
Consider the SAS-GMA protocol π depicted in Figure 9.3. Let n be the maximum size
of the group G. Let H be a multi-keyed hash function which is εau-almost universal with
respect to each sub-key pair and εar-almost regular with respect to each sub-key. Let the
commitment scheme be (T + µ, εb)-binding and (T + µ, εnm)-non-malleable

There exists a (small) constant µ such that the protocol π is (T, q, q · (nεnm + εb +
max {εau, εar}))-secure.

2Note that the varying components brkα = brkβ can be in different locations of b~rα, b~rβ.

147

Sylvain Pasini

Proof.
The proof directly follows from Theorem 9.2, proving the security of LP-SAS-GMA in the
stand-alone model, and from Theorem 6.9 proving self-composability of any SGMA protocol.

9.4 Applications

Applications of SAS-based group message authentication protocols (SAS-GMA) are similar
to applications in two-party settings. However, group protocols are more general than
two-party protocol. Therefore, applications may be any of the two-party applications, see
Section 8.6, but adding the group feature. For instance, a secure Voice over IP telephone
call can be now extended to a secure Voice over IP conference call.

148

Chapter

TEN

From Message Authentication

to Key Agreement

In this chapter, we show how to combine message authentication with any key agreement
protocol. The resulting key agreement protocol is secure against active attacks. More
precisely, we start by defining authenticated key agreements. Then, in Section 10.2, we
study two well established key agreement protocols: the Diffie-Hellman [DH76] and the
Burmester-Desmedt [DB94]. The first one is actually limited to two-party settings while
the second one was designed for group settings. Both protocols are resistant to passive
attacks only. Therefore, protocol messages require authentication. In Section 10.3, we
study prior work on specific authenticated key agreements. In Section 10.4, we present
a generic construction for authenticated key agreement based on two primitives: message
authentication and key agreement. We published this construction in [PV06b]. Then, we
present two optimal SAS-based authenticated key agreement protocols: one for two-party
settings in Section 10.5, called PV-SAS-AKA and published in [PV06b], and another one
for group settings in Section 10.6, called LP-SAS-GKA and published in [LP08]. Finally, we
present possible applications and, in particular, we study the design of a secure voice over
IP system.

149

Sylvain Pasini

10.1 Authenticated Key Agreement Primitive

In general, the definition for a two-party setting is easier to understand than the one for a
group setting. Therefore, we start by giving the definition for two-party and we will then
extend it to groups.

Definition 10.1 (Two-Party Authenticated Key Agreement).
An Authenticated Key Agreement (AKA) protocol between Alice and Bob starts with no
input, is independent from the current state, and ends with no output but a final state on
each side specifying a pair (sk, id).

An honest run of an AKA protocol should end with state (sk, idB) on the side of Alice
and with state (sk, idA) on the side of Bob.

An attack is successful if a test(n, sk, id) query is positively answered where n and id
corresponds to nodes on which no reveal nor corrupt query was made. For simplicity, we
do not consider attacks making Alice and Bob end on some inconsistent states. Namely,
mutual authentication is assumed to be (implicitly or explicitly) made by further commu-
nication.

Definition 10.2 (Group Key Agreement).
A Group Key Agreement (GKA) protocol π between a group G composed of ℓ participants
G = {id1, . . . , idℓ} starts with no input, is independent from the current state, and outputs
a pair (sk,G′).

An honest run of a group AKA should end with the same output (sk,G′) for all partici-
pants.

An attack is successful if a test(n, sk, id) query is positively answered where n and id
corresponds to nodes on which no reveal nor corrupt query was made. An attack is also
successful if two non-corrupted participants outputs two different pairs (sk,G′).

Obviously, any GKA protocol that is (T, εa)-immune against active attacks and (T, εp)-
secure against passive attacks is also (T, εa +εp)-secure, as long as both definitions are given
in the same attack model. A formal proof is given later. In particular, we can construct also
universally composable SAS-based key agreement protocols as long as the underlying key
agreement protocol is universally composable against passive attacks. However, stand-alone
security is sufficient for many practical settings, since the key agreement protocols are often
executed in isolation to set up the communication network.

Note that it is important to minimize the amount of manually authenticated communica-
tion in scenarios where nodes can form many subgroups. In particular, it should be easy to
exclude corrupted nodes from the group without transferring any additional SAS message.

150

Part I Chapter 10 - From Message Authentication to Key Agreement

10.2 (Non-Authenticated) Key Agreement

10.2.1 The Diffie-Hellman Key Agreement Protocol

The Diffie-Hellman (DH) two-party key agreement protocol [DH76] allows two parties, say
Alice and Bob, to agree on a shared secret key. It is provably secure against passive attacks
only. Clearly, this means that protocol messages should be authenticated to avoid active
attacks.

A classical authenticated DH protocol over a multiplicative group spanned by a generator
g consists for Alice (resp. Bob) in picking a random (secret) integer xA (resp. xB), sending
the Diffie-Hellman public keys, yA = gxA (resp. yB = gxB) over the authenticated channel,
computing skA = yxA

B (resp. skB = yxB

A) and ending with state (skA, idB) (resp. (skB , idA)).
If the run is honest, we should obtain skA = skB = yxAxB

A . In this case, authenticated mes-
sages are pretty long, but authentication is necessary to thwart man-in-the-middle attacks.
For more details, see Section 2.1.2.

10.2.2 The Burmester-Desmedt Group Key Agreement Protocol

The Burmester-Desmedt (BD) group key agreement protocol [DB94] is provably secure
against passive attacks [BD05] and thus is a perfect starting point for a SAS-based GKA.
The BD protocol is a generalization of the DH key agreement protocol. Note that other
two-party key agreement protocols can also be generalized to groups, for instance, see the
compiler of Just and Vaudenay [JV96].

For simplicity, consider a group G of n participants1 Pid1 , . . . ,Pidn
arranged in a ring. As

depicted on Figure 10.1, the protocol only requires two rounds over an authenticated channel,
while most of the schemes requires O(n) rounds. Let g be a generator of a q-element secure
Diffie-Hellman Decision Group G. At the end of the protocol, each participant Pi obtains
ski = gk1k2+k2k3+...+knk1 .

1The protocol can be trivially generalized to any n-element group G.

151

Sylvain Pasini

Pidi
idj ∈ G \ {idi}

R1:
Pick ki ∈u Zq and set zi ← gki

broadcast(zi)−−−−−−−−−−−−−→
zj←−−−−−−−−−−−−−←−−−−−−−−−−−−−

R2: Xi ←
(

zi+1

zi−1

)ki

ski ← (zi−1)
nki ·Xn−1

i ·Xn−2
i+1 · . . . ·Xi−2

Output ski

broadcast(Xi)−−−−−−−−−−−−−→
Xj←−−−−−−−−−−−−−←−−−−−−−−−−−−−

Figure 10.1. The BD Group Key Agreement Protocol.

The key derivation for an arbitrary party Pidi
with idi ∈ G works as follows:

ski = (zi−1)
nki ·Xn−1

i ·Xn−2
i+1 · . . . ·Xi−2

=
[
zki

i−1

]
·
[
zki

i−1 ·Xi

]
·
[
zki

i−1 ·Xi ·Xi+1

]
· . . . ·

[
zki

i−1 ·Xi ·Xi+1 · · · ·Xi−2

]

=
[
zki

i−1

]
·
[
zki

i−1 ·
(
zi+1

zi−1

)ki

]
·
[
zki

i−1 ·
(
zi+1

zi−1

)ki

·
(
zi+2

zi

)ki+1
]
· . . .

. . . ·
[
zki

i−1 ·
(
zi+1

zi−1

)ki

·
(
zi+2

zi

)ki+1

· · · ·
(
zi−1

zi−3

)ki−2
]

=
[
gki−1ki

]
·
[
gki−1ki · g

kiki+1

gki−1ki

]
·
[
gki−1ki · g

kiki+1

gki−1ki
· g

ki+1ki+2

gkiki+1

]
· . . .

. . . ·
[
gki−1ki · g

kiki+1

gki−1ki
· g

ki+1ki+2

gkiki+1
· · · g

ki−1ki−2

gki−3ki−2

]

=
[
gki−1ki

]
·
[
gkiki+1

]
·
[
gki+1ki+2

]
· . . . ·

[
gki−2ki−1

]

= gk1k2+k2k3+...+knk1

So, if the run is honest, i.e., all the sent messages are reaching the other parties with no
modification, then all parties end with the same secret key sk.

10.3 Prior Authenticated Key Agreements

In this section, we present two two-party AKA protocols: the Hoepman and the PGPfone
protocols. For both, the security is not formally proven ([Hoe04] only provides a sketch of
argument for the security).

In what follows, we will study a generic construction reducing the amount of authenticated
bits in AKA protocols. Using this construction with the DH protocol and the Vau-SAS-MCA

152

Part I Chapter 10 - From Message Authentication to Key Agreement

protocol, we obtain the DH-SC protocol of Čagalj, Čapkun, and Hubaux [CCH05]. By using
an optimized SAS-MCA protocol we can save one protocol move. More details about this
construction are presented in Section 10.5.

So far, there is no AKA specially designated for groups. One can, for instance, use the
BD presented in Section 10.2.2 and add some authentication to the exchanged messages.
We study this construction in Section 10.6.

10.3.1 The Hoepman AKA Protocol

We first informally present an AKA protocol from Hoepman [Hoe04]. It is based on the
DH protocol and it uses an authenticated channel for the authentication of each DH value.
This protocol runs in three steps: commitment, authentication, and opening. Note that the
original protocol has a fourth step: the key validation.

As depicted in Figure 10.2, instead of revealing its DH public key, each party first commits
on it, keeping it hidden. In the next step, each participant authenticates a piece of its
DH public key and opens their commitment just after. Finally, both open the received
commitments and check the authenticated string before completing the regular DH protocol.

Alice Bob

pick xA, yA ← gxA pick xB, yB ← gxB

(cA, dA)← commit(yA)
cA−−−−−−−−−−−−−→
cB←−−−−−−−−−−−−− (cB , dB)← commit(yB)

SASA ← pieceof(yA)
authidA

(SASA)
−−−−−−−−−−−−−→

authidB
(SASB)

←−−−−−−−−−−−−− SASB ← pieceof(yB)
dA−−−−−−−−−−−−−→ ŷA ← open(ĉA, d̂A)

ŷB ← open(ĉB , d̂B)
dB←−−−−−−−−−−−−−

check SASB
?
= pieceof(ŷB) check SASA

?
= pieceof(ŷA)

skA ← (ŷB)xA skB ← (ŷA)xB

final state: skA, idB final state: skB , idA

Figure 10.2. The Hoepman AKA Protocol.

153

Sylvain Pasini

10.3.2 PGPfone

An interesting AKA protocol was used by Zimmermann for the PGPfone in 19952. The
protocol is depicted in Figure 10.3. Compared to the previous one, the advantages are
first to reduce the number of moves over the insecure channel and second to make both
authenticated strings equal. Note that this protocol was given with no security proof.

This protocol also consists in exchanging DH public keys and then authenticating them.
For that reason, the first participant, i.e., Alice, commits to its public key, then the second
participant reveal its public-key, and Alice opens their commitment. Finally, the authenti-
cated string SAS is a piece of the digest (denoted truncH on Figure 10.3) of the DH protocol
transcript.

Alice Bob

pick xA, yA ← gxA pick xB, yB ← gxB

(c, d)← commit(yA)
c−−−−−−−−−−−−−→

yB←−−−−−−−−−−−−−
d−−−−−−−−−−−−−→ ŷA ← open(ĉ, d̂)

skA ← (ŷB)xA skB ← (ŷA)xB

SASA ← truncH(yA||ŷB) SASB ← truncH(ŷA||yB)
authidA

(SASA)
−−−−−−−−−−−−−→ check SASA

?
= SASB

check SASA
?
= SASB

authidB
(SASB)

←−−−−−−−−−−−−−

final state: skA, idB final state: skB , idA

Figure 10.3. The PGPfone AKA Protocol.

10.4 KA+MA = AKA

The most straightforward way to achieve (T, ε)-immunity against active attacks is to au-
thenticate the entire protocol transcript. Namely, participants must first execute the group
key agreement protocol and then use a group message authentication protocol to verify
that all transferred message were unaltered. A naive implementation, where protocols are
executed sequentially, adds three extra rounds to the key agreement protocol. However,
since message authentication protocols are universally composable, we can execute them in
parallel and save two messages for two-party and one complete round for group protocols.

2personal communication.

154

Part I Chapter 10 - From Message Authentication to Key Agreement

It is also possible to merge both protocols more tightly and thus obtain a more efficient
protocols, see [LN06a].

For two-party protocols, it is reasonable to combine the DH key agreement protocol with
one of the MCA protocols discussed in Chapter 8. A schema of the construction is depicted
in Figure 10.4.

Alice Bob

pick xA, yA ← gxA pick xB , yB ← gxB

MCA protocol
input: yA input: yB

←−−−−−−→
· · ·

←−−−−−−→
output: ŷB, idB output: ŷA, idA

skA ← (ŷB)xA skB ← (ŷA)xB

final state: skA, idB final state: skB , idA

Figure 10.4. The DH Protocol Over a MCA Protocol.

We propose a generic SAS-based construction for an AKA protocol that we call the con-
structed AKA protocol or simply the AKA protocol. For this, we use an initial AKA
protocol (with longer strings to be authenticated), that we call the AKA0 protocol, and an
MCA protocol with short SAS. Consider that the AKA0 protocol requires nk ≥ 2 moves
with the (nk − 1)th being from Alice to Bob. Consider also that the MCA protocol requires
na ≥ 2 moves over the insecure channel, the first one being from Alice to Bob. In the AKA
protocol, the (nk − 2) first moves of the AKA0 are performed over the insecure channel.
Then, both participants assembles his view of the protocol transcript τ by concatenating all
protocol messages (sent and received ones). Then, an MCA protocol starts. Alice wishes
to authenticate τ concatenated with her (nk − 1)th message α in the AKA0 protocol. Bob
wishes to authenticate the same τ‖α concatenated with his last message β in the AKA0

protocol. (Note that Bob selects the message to be authenticated after receiving Alice’s
first message in the MCA protocol.) At the end, both participants use the authenticated
messages to complete the AKA0 protocol and end with final states as specified in the AKA0

protocol. We have nk + na − 2 moves in total.

Note that MCA can have na < 2. For instance the trivial MCA sending input messages
MCA over the authenticated channel. In that case, we augment the MCA protocol by virtual
moves and we obtain nk moves in total. However, MCA protocols with na < 2 must have
pretty large SAS to exchange the messages.

155

Sylvain Pasini

We can make a similar construction based on an n′a-move MMA protocol instead of an
MCA protocol. In that case, if the n′a ≥ 1 then we can only encapsulate the last move β of
the AKA0 protocol in the MMA protocol, leading us to max(nk, nk +n′a−1) moves in total.

Theorem 10.3 (Security of the AKA Construction).
Let us consider a (T, εk)-secure AKA protocol with nk moves (the AKA0 protocol) and a
(T, εa)-secure MCA protocol with na moves. The generic construction π is essentially an
AKA protocol with max(nk, nk + na − 2) moves in which the structure of authenticated
messages is similar as in the MCA protocol.

There exists a constant µ such that for any T the protocol π is (µ · T, εk + εa)-secure.

Using the DH protocol and an na-move MCA protocol leads us to a max(2, na)-move AKA
protocol in which the structure of authenticated messages is similar as in the MCA protocol.

With the construction based on an n′a-move MMA protocol, we obtain max(2, n′a + 1)
moves.

In the case where we want to achieve small SAS, we must have nA and n′A at least equal
to 2, leading us to na moves using MCA protocols and n′a + 1 moves using MMA protocols.

Since (n′a+1)-move MCA protocols can be made from n′a-move protocols, we may decrease
the total number of moves in AKA protocols by starting from MCA protocols directly.

Proof.
While we give the proof for a two-party setting, it can be extended to group settings by
using the same idea.

Let the constructed AKA0 protocol view from Alice, i.e., sent and received messages,
be the sequence of messages mA,1,mA,2, . . . ,mA,k where mA,k−1 is from Alice to Bob and
mA,k from Bob to Alice. We denote by τA the sequence mA,1,mA,2, . . . ,mA,k−2, by αA the

message mk−1, and by β̂ the message mk. We further let τ̂B‖α̂B‖β̂ be the accepted message
from Bob at the end of the MCA protocol.

Similarly, for each instance of Bob, we let τB be the constructed transcript of the nk − 2
first messages in the AKA protocol, τ̂A‖α̂A be the accepted message at the end of the MCA
protocol, and β be his last message in the AKA0 protocol assuming that Alice’s last one is
α̂. We let α = α̂. Bob’s message to be authenticated is τB‖αB‖β.

In the following, we consider an adversary A against the AKA protocol. By using a sim-
ulator B interacting with A, we will reduce A into an adversary against the MCA protocol.
By using another simulator C interacting with A, we will reduce A into an adversary against
the AKA0 protocol.

Clearly, running A in parallel with B and C with the same random source, we derive that
whenever A succeeds, either B or C succeeds.

156

Part I Chapter 10 - From Message Authentication to Key Agreement

The simulator B simply simulates instances running the AKA0 protocol and launches the
MCA protocol instances when appropriate. test, remove, reveal and corruct queries can easily
be simulated. Clearly, the attack against the MCA protocol succeeds with probability at
most εa. So, it does not succeed with probability at least 1 − εa. In those cases, we have
τB = τ̂B , τA = τ̂A, αA = α̂A = αB = α̂B , and β = β̂, just as if the instance of Alice and Bob
had the AKA0 protocol run over an authenticated channel.

The simulator C simply simulates the MCA protocol and replaces inputs to the send oracle
by authenticated ones when possible, or fails. Clearly, the attack against the AKA0 protocol
succeeds with probability at most εk.

10.5 An Optimal AKA Protocol: PV-SAS-AKA

Given the previous section, it is now straightforward to build an AKA based on a KA and a
MCA protocol. In this section, we give a SAS-based Authenticated Key Agreement, called
PV-SAS-AKA as example. The construction uses our PV-SAS-MCA protocol and the DH
key agreement protocol. The resulting protocol is optimal.

Alice Bob

pick xA, yA ← gxA pick xB , yB ← gxB

pick K ∈u {0, 1}κ pick R ∈u {0, 1}ρ
(c, d)← commit(yA,K)

yA,c−−−−−−−−−−−−−→
yB ,R←−−−−−−−−−−−−−

d−−−−−−−−−−−−−→ K̂ ← open(ŷA, ĉ, d̂)

SAS← R̂⊕ h(ŷB ,K)
authidA

(SAS)
−−−−−−−−−−−−−→ SAS

?
= R⊕ h(yB , K̂)

check SAS is the same
authidB

(SAS)
←−−−−−−−−−−−−−

check idA 6= idB

skA ← (ŷB)xA skB ← (ŷA)xB

final state: skA, idB final state: skB , idA

Figure 10.5. An Optimal SAS-based AKA Protocol: PV-SAS-AKA.

157

Sylvain Pasini

10.6 An Optimal GKA Protocol: LP-SAS-GKA

In many practical settings, we must be able to exclude group members that behave mali-
ciously. Ideally, this operation should not use additional authenticated messages. Conse-
quently, a textbook key agreement protocol is not suitable for our needs. Indeed, a shared
key sk gets compromised as soon as a group member gets corrupted and in that case the
whole protocol should be run again with the new restricted group. To avoid this problem,
we need a key agreement protocol that also fixes long-term pairwise authentication keys so
that we can re-run key agreement protocols with no additional authenticated communica-
tion. The corresponding key agreement protocol is depicted in Figure 10.6. We published
it in [LP08].

In short, the group members run a SAS-based GKA only once. The first run allows
the group members to obtain a common group secret key sk as well as long-term pairwise
authentication keys skidi,idj

for all pairs idi, idj ∈ G. These latters keys provide possibility to
re-run ordinary GKA protocols with no additional SAS message. The group secret key sk
is generated by the BD GKA while the long-term pairwise authentication keys skidi,idj

are
formed based on Diffie-Hellman key exchange.

Pidi
Pidj

, idj ∈ Ĝi \ {idi}

R1: Generate a DH long-term keys:
⋄ xi ∈u Zq, yi ← gxi

Start the BD protocol:
⋄ ki ∈u Zq, zi ← gki

broadcast(yi,zi)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
R2-3:

SAS:

Continue with the BD protocol:
⋄ Compute Xi.

Use the LP-SAS-GMA protocol
⋄ to authenticate mi ← (yi, zi,Xi).

broadcast(i,mi,ci)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
broadcast(di)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−

auth-broadcast(SASi)−−−−−−−−−−−−−→←−−−−−−−−−−−−−←−−−−−−−−−−−−−
P0: If the LP-SAS-GMA is accepting:

⋄ Output sk and G according to BD.
⋄ Store xi and all yj for later use.

Figure 10.6. An Optimal SAS-based GKA Protocol: LP-SAS-GKA.

As the transcript of the BD protocol is authenticated with our LP-SAS-GMA, the BD
protocol is immune against active attacks with the same guarantees as Theorem 6.9 and
Theorem 9.2 specify. Moreover, any two parties idα, idβ ∈ H can establish a pairwise secret
key skα,β = f(gxαxβ), as they both know the corresponding long-term public keys yi = gxi

for all group members i ∈ G. Hence, they can use any classical authentication protocol to
protect new instances of the GKA protocol against active attacks. In particular, we can

158

Part I Chapter 10 - From Message Authentication to Key Agreement

merge small groups G1,G2, if there is an honest party Pi ∈ G1∩G2, by sending all intergroup
communication through Pi.

Of course, if the formed group is known to have a static nature, then one can skip the
setup of long-term DH keys skα,β.

10.7 Applications

Key agreements have many applications. Here, we restricts to applications where an authen-
ticated channel is available, like telephone, or like user channel such as string comparison
or string transmission. For instance, SAS-based key agreements may be used to establish
a secret key between cell phones, or between devices in an ad-hoc network. Note that a
similar protocol to our LP-SAS-GKA of Figure 10.5 is used in Bluetooth version 2.1.

Secure Voice over IP

Voice over IP (VoIP) is an emerging application these days. The telephone is widely de-
veloped and people are familiar with its use. However, it is still expensive. VoIP emerges
principally because it is very cheap, and sometimes free. In addition, voice over IP applica-
tions may offer others features as video stream, chat, file transfer, etc.

The user choice today is Skype. Users chose a free and easy to use application. In
particular, installation, account creation, and use should be straightforward for any user with
no technical skill. The calls are encrypted. However, it is hard to say how the encryption is
done and with which key. It seems that Skype is able to decrypt all data. Skype acts as a
trusted third party.

One interesting point with voice over IP is the presence of an authenticated channel.
Indeed, starting a simple voice over IP call, the channel is clearly insecure and anyone can
eavesdrop the conversation. While this channel is vulnerable to passive attacks, it seems
that it resists to active attacks. Indeed, the ability of the user to recognize the voice and the
behavior of the interlocutor helps a lot. In addition, users are using an interactive channel
and it is even more complicated to inject forged packet or to replay recorded sequences.
Indeed, it seems hard to forge the vocal channel in order to produce the same voice than the
source, to mimic the same behavior than the source, to inject the forged or replayed sequence
correctly in the flow of the conversation, and everything in real time. For that reasons, we
assume that the vocal channel ensure authenticity and integrity (but not confidentiality)
and so users are able to exchange SAS.

In 2006, we implemented a VoIP system with two main goals: firstly, to present our
PV-SAS-AKA protocol and, secondly, to familiarize people with cryptography. This latter

159

Sylvain Pasini

argument required the development of an eavesdropper. Indeed, the functional demonstra-
tion is composed of two complete systems (PC and phone) and an additional speaker which
simulates an eavesdropper as depicted in Figure 10.7. When the communication is in clear,
the speaker plays the eavesdropped voice signals, and when the communication is encrypted,
the speaker seems to play anything.

Figure 10.7. Installation Overview of the Secure Voice over IP System.

We implemented the PV-SAS-AKA (see Figure 10.5). For the demo purpose, we adapted
the protocol a little. For instance, starting the application opens the main window, depicted
in Figure 10.8(a) and launches a TCP server. When a user starts a call, he selects an IP
address (the TCP port number is fixed as parameter in the application), and then starts
a TCP client which will connect to the TCP server. Note that there is no integration of
SIP identities and any other similar protocol. For the demo application, we hard-coded the
destination IP addresses in order to facilitate the work of the users. Otherwise, there may try
to call wrong IP’s. So, after the distant user accepted th call, the application directly opens
the call in progress window, depicted in Figure 10.8(b). The communication is currently
insecure and both users can communicate. When they decide they can switch to the secure
mode. One of the user simply clicks on the “Enter secure mode” button. This will launch
the key agreement protocol.

The implemented protocol is depicted in Figure 10.9. We chosen a SAS length of 15 bits,
i.e., ρ = 15, and clearly the adversary will have a probability of success close to 2−15. Note
that it is hard for an adversary to launch multiple instances of the protocol since the users
will detect the attack. We fixed the length of K to 30 bits, i.e., κ = 30, in order to avoid
attack on K, clearly the adversary has more chance to targets his attack to the SAS itself.
We implemented the commitment with a hash function, here MD5. For that, we need some

160

Part I Chapter 10 - From Message Authentication to Key Agreement

(a) (b)

Figure 10.8. The Main (a) and Call in Progress Windows (b).

additional randomness in order to hide the value K (since p, g, and yA are public). We
chosen the length of the seed r to be 80-bit long in order to avoid second preimage attacks.
At the end, we obtain a DH shared secret key.

It remains for the users to agree on the exchanged DH keys by checking they have the
same SAS. At the end of the protocol, the application shows the local SAS, as depicted in
Figure 10.10, and each user should accept or reject it. Users should check orally that both
have the same SAS, typically, one spells its SAS and the other one agree or disagree.

The protocol continues only if both users accept the SAS. If one rejects its SAS, the
application stays in the insecure mode. A user can check if the application encrypt the data
or not by watching to the state in the call in progress window, see Figure 10.8(b). The
final derived DH key is confidential thanks to the DH protocol and authentic thanks to the
PV-SAS-MCA protocol. However, we should obtain an AES secret key. We simply hash
the DH key with MD5 and we obtain the desired key. Since now, the call is encrypted with
AES and the derived key.

Users leave the insecure mode as soon as one decide to do that.

In conclusion, we have a fully functional voice over IP application. The security association
is done end-to-end and users are ensured that nobody spies the conversation in the middle,
unlike Skype. Further work may be done in this application to make it compliant with SIP
identities. Another approach would be to implement the cryptography part in an existing
(insecure) application.

161

Sylvain Pasini

Alice Bob
Public: g, p

Wait for connection Wait for connection
open connection−−−−−−−−−−−−→

pick xA, yA ← gxA pick xB, yB ← gxB

pick K ∈u {0, 1}30 pick R ∈u {0, 1}15
r ∈u {0, 1}80

c← MD5(r‖p‖g‖yA‖K)
yA,c−−−−−−−−−−−−→
yB ,R←−−−−−−−−−−−−

d← (K‖r) d−−−−−−−−−−−−→ check ĉ
?
= MD5(r̂‖p‖g‖ŷA‖K̂)

SAS← R̂⊕ trunc15(MD5(K‖ŷB))
authidA

(SAS)
−−−−−−−−−−−−→ SAS

?
= R⊕ trunc15(MD5(K̂‖yB))

check SAS are the same
authidB

(SAS)
←−−−−−−−−−−−−

skAES
A ← MD5 ((ŷB)xA) skAES

B ← MD5 ((ŷA)xB)

final state: skAES
A , idB final state: skAES

B , idA

Figure 10.9. The Implemented PV-SAS-AKA for Secure VoIP.

Figure 10.10. SAS Confirmation (Done on Both Sides).

162

Part II

Signatures Schemes

163

Chapter

ELEVEN

Definitions of Digital Signatures and

Interactive Proofs

We start with some generalities on digital signature schemes. In particular, we present
different types of signatures that may be interesting in future sections. We also formally
define digital signatures, i.e., we present the usual security properties and adversarial models.
We finally define the necessary background related to interactive proofs. For instance, we
define the notions of proof of knowledge, zero-knowledge proof, and deniability.

11.1 Overview of Digital Signatures

When we talk about cryptography, everyone has in mind data encryption. In other words,
the cryptography suggests very often the problem of confidentiality. However, digital sig-
natures undoubtedly constitute one of the most fundamental tools of public-key cryptogra-
phy [Mon06]. A signature scheme allows to bind some information with an identity as-
sociated to a public key. Consequently, thanks to the knowledge of a public key and its
related identity, a signature scheme allows to authenticate some information. In addition to
authentication, thanks to public-key encryption, signature schemes allow to setup a secure
communication as seen in Chapter 2 by authenticating public keys.

165

Sylvain Pasini

A Few Examples of Digital Signatures Primitives. The world of digital signatures is huge.
Depending on the application requirements, cryptographers developed several models. First,
there is the basic signature with a signer and one or several verifiers. The signature should
be unforgeable. Then, still in two party settings, there are schemes for which the signature
is invisible, undeniable, non-transferable, or any other assumption. There are also schemes
dedicated to more than one signer, for instance group signatures or threshold signatures while
there are schemes dedicated to allow a third party to prove the correctness of the signature.
As said by Cao and Liu [CL08] there exists more than 60 digital signatures models and even
cryptography experts have difficulties to understand them due to the various properties.
This paragraph presents (informally) some useful digital signature schemes.

Basic digital signature scheme. As explained in Section 2.1.3 and as depicted in Fig-
ure 2.6, we have a signer and a verifier. The signer generates a signing key and a
verification key. He keeps the signing key private and reveals (and authenticates) the
verification key to the verifier. The signer is now able to produce a signature for any
message by using his signing key. Then, he gives the message and its signature to the
verifier who is able to verify the validity of the pair by using the verification key.

The general security properties are completeness and unforgeability. In short, com-
pleteness says that if the signature was produced with the input message and the
signing key, then the verifier should accept the pair if it uses the corresponding ver-
ification key. Unforgeability says that it is infeasible to produce a pair without the
signing key which will be accepted by the verifier.

Multi-signature. In addition to the basic properties, a multi-signature scheme [IN83] al-
lows several people to sign jointly and efficiently the same message. For instance, all
committee members of an association sign together a document.

Group signature. In addition to the basic properties, a group signature scheme [CvH91]
allows any member of a group to sign a message. The verifier can verify the validity
of the signature, i.e., can know that a member of the group signed the message, but
the verifier can not know which member signed the message (anonymity). In case
of dispute, the scheme has a revocation mechanism which allows a designated group
authority to discover the signer’s identity.

Threshold signature. In addition to the basic properties, a t-threshold signature [DF90]
allows t or more group members to cooperate and to produce a signature on behalf of
the group.

Ring signature. As group signatures, ring signatures protect the signer identity behind
the group (anonymity). Unlike group signatures, ring signatures [RST01] have no
group managers, no setup procedures, no revocation procedures, and no coordination.

166

Part II Chapter 11 - Definitions of Digital Signatures and Interactive Proofs

Proxy signature. A proxy signature scheme [MUO96] enables a proxy signer to sign mes-
sages on behalf of a genuine signer. For instance, a president on vacation can delegate
the signature to his vice-president.

Blind signature. A blind signature scheme [Cha84] allows a message owner to get a signa-
ture on this message by a signer without revealing any information about the message.
The resulting blind signature can be universally verified with the unblinded message
in the same manner than a regular digital signature.

One-time signature. A one-time signature scheme only allows the signature of a single
message using a given private key.

Fail-stop signature. A fail-stop signature scheme [Pfi91, vHP92] allows the signer to re-
voke its key. Indeed, if the signer is confronted with an alleged signature that he has
not produced, then he can prove that the alleged signature is in fact forged. After-
wards, he can revoke his verifying key, thus the name fail-stop signature scheme.

Invisible (or undeniable) signature. Undeniable signatures [CvA90] are not universally
verifiable. Indeed, a signature can only be verified with the help of the signer, i.e.,
through a verification protocol. This raises a new problem, a dishonest signer may
refuse to authenticate a message. For that reason, undeniable signatures have a denial
protocol in addition to the verification protocol. The signer cannot falsely deny a valid
signature.

Designated-confirmer signature. Here, there are three entities: a signer, a verifier, and a
confirmer. A designated-confirmer signature scheme [Cha94] works like an undeniable
signature scheme with the main difference that the verification is shifted from the signer
to the confirmer. With undeniable signatures, the signer cooperation is essential: if
he does not cooperate, the recipient cannot use the signature. Designated-confirmer
signatures solve this weakness by adding a third party, the confirmer, able to help the
recipient to verify the signature.

Designated-verifier signature (DVS). DVS was motivated by privacy issues associated
with disseminations of signatures. A DVS scheme [JSI96] allows a prover to convince
a designated-verifier that he has signed a message. The designated-verifier is unable
to convince anyone else of this fact, i.e., he cannot transfer the signature to a third
party. We say that the signature was designated to one verifier.

Universal designated-verified signature (UDVS). An UDVS [SBWP03] can function
as a standard publicly-verifiable digital signature but has an additional functionality
which allows any holder of a signature to designate it to any desired designated-
verifier. As for DVS, the designated-verifier can verify that the message was signed
by the signer, but is unable to convince anyone else of this fact. The term universal
means that anyone who posses the signature is able to designate it.

167

Sylvain Pasini

Universal designated-verified signature proof (UDVSP). A drawback with UDVS
is that they require the verifier to create a key pair with the same parameters than
the signer. In some applications, this is a big restriction. UDVSP [BSNS05] employs
an interactive protocol between the signature holder and the verifier allowing to prove
the signature validity. The verifier never obtains the signature, he is only convinced of
its validity and cannot transfer the proof. The signature holder’s privacy is protected
and so no verifier public key is necessary.

Many others signature schemes exists. Many of them can be derived from the above
examples by combining some properties. For instance, there exists threshold proxy multi-
signature [TYH04] which gathers the properties of the above threshold signature, proxy
signature, and multi-signature.

In order to survive to these many emerging models, Cao and Liu [CL08] propose a clas-
sification method. In short, they classify a signature scheme by a string like AaBbCcDdEe.
The a ∈ [0, 26] describes a classification based on the signing party, for instance some-
body, a group, somebody on behalf of the original signer, anonymous, or many others. The
b ∈ [0, 28], c ∈ [0, 8], d ∈ [0, 1], e ∈ [0, 1] describe a classification based respectively on the
verifying party, the lucidity of the content of the message, the method for producing the
public key, and the consequence of updating the private key. Thanks to this methodology
they are able to classify most of the existing signatures schemes.

11.2 Digital Signature Schemes Formally

We call the domain or message space the set of all possible input messages and we denote
it by M. We call the signature space the set of all possible signatures and we denote it by
S. We formalize a digital signature scheme S by three algorithms:

• The setup algorithm (Kp,Ks)← setup(1λ) generates a public-private key pair depend-
ing on a security parameter λ.

• The sign algorithm σ ← sign(Ks,m) outputs a valid signature σ ∈ S of a message
m ∈M by using the private key Ks.

• The verify algorithm b← verify(Kp,m, σ) tells whether the pair (m,σ) is valid or not
by using the public key Kp. It returns b = 1 if and only if the pair is valid with respect
to Kp and b = 0 otherwise.

The scheme is said complete if for any (Kp,Ks) ← setup(1λ), any message m ∈ M, and
any σ ← sign(Ks,m), then verify(Kp,m, σ) outputs 1.

168

Part II Chapter 11 - Definitions of Digital Signatures and Interactive Proofs

11.2.1 FML-DS versus AML-DS

We define fixed message-length digital signature (FML-DS) schemes any signature scheme
which applies only to a restricted domain, e.g., M = {0, 1}r(λ). As opposite, we define
arbitrary message-length digital signature (AML-DS) schemes the ones which have an infinite
domain, e.g., M = {0, 1}∗.

An FML-DS can be transformed into AML-DS following the hash-and-sign paradigm.
Here, hashing is used as a domain extender. For instance, DSA [DSS94, DSS00] is based on
SHA-1 [SHA95] while RSA [RSA78] uses MD5 [Riv92] in the standard PKCS #1 v1.5 that
is used in X.509 certificates [HFPS99].

11.2.2 Adversarial Model

Here, we adopt the model from Goldwasser, Micali and Rivest [GMR84, GMR88]. We
consider an adversary A playing a game with a challenger C. At the beginning of the game,
the challenger C generates a key pair. Thus, C knows the private key Ks and is able to
produce valid signatures for any messages. The goal for A is to break the signature scheme
S by yielding a valid pair (m̂, σ̂) which was not produced by C.

We first note that there exist different degree of freedom associated to adversaries.

Known Message Attacks. A known message attack (KMA) only allows the adversary A
to obtain from the challenger C random messages together with their respective valid
signature.

Chosen Message Attacks. A chosen message attack (CMA) allows the adversary A to
adaptively choose input messages and then to ask the challenger C to sign it.

No Message Attacks. A no message attack (∅MA) does not allow the adversary A to see
a sample pair message-signature.

As well, we distinguish two different goals:

Universal Forgery. An universal forgery (UF) implies that the adversary A found an
algorithm which outputs valid forged signatures σ̂ for any input message m̂.

Existential Forgery. An existential forgery (EF) implies that the adversary A has output
a valid forged signature σ̂ for a specific message m̂.

We say that an attack is successful if an adversary A yields a valid signature σ̂ for a message
m̂ either imposed (UF) or chosen (EF) and C never signed the message m̂ but only a set of
messages m1, . . . ,mℓ which are either known (KMA) or chosen (CMA) by the adversary.

169

Sylvain Pasini

Textbook signature schemes such as ElGamal [ElG85] or plain RSA [RSA78] signatures
are often existentially forgeable.

In the following we will consider only the weak security model, i.e., UF-KMA, and the
strong security model, i.e., EF-CMA.

Weak Unforgeability: UF-KMA Game. Let A be any T -time adversary playing the UF-
KMA game with a challenger C as depicted in Figure 11.1. At the beginning of the game, C
generates a key pair and gives the public key Kp to A. Then, C gives a challenge message
m̂ to A. C also produces samples of signed messages, i.e., some valid signature to known
messages, and gives them to A. At the end, A should output a valid signature σ̂ for the
challenge message m̂.

Definition 11.1 (UF-KMA Security).
The signature scheme is said (T, ℓ, ε)-UF-KMA-secure if any T -time adversary A with ℓ
valid signatures on known messages wins the game of Figure 11.1 with probability at most
ε.

The scheme is said UF-KMA-secure if for any T = poly and ℓ = poly there exists
ε = negl such that the scheme is (T, ℓ, ε)-UF-KMA-secure.

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)
bm←−−−−−−−− pick m̂ ∈u M

∀i ∈ [1, ℓ] :
pick mi ∈u M

mi||σi←−−−−−−−− σi ← sign(Ks,mi)

select σ̂
bσ−−−−−−−−→ b← verify(Kp, m̂, σ̂)

A wins if b = 1 and m̂ /∈ {m1, . . . ,mℓ}.
Figure 11.1. The UF-KMA Game.

Strong Unforgeability: EF-CMA Game. Let A be any T -time adversary playing the EF-
CMA game with a challenger C as depicted in Figure 11.2. At the beginning of the game,
C generates a key pair and gives the public key Kp to A. Then, A is allowed to query
(adaptively) C with chosen messages in order to obtain their (genuine) signature. At the
end, A should outputs a forged valid pair message-signature (m̂, σ̂).

Definition 11.2 (EF-CMA Security).
The signature scheme is said (T, ℓ, ε)-EF-CMA-secure if any T -time adversary A bounded

170

Part II Chapter 11 - Definitions of Digital Signatures and Interactive Proofs

by ℓ signature requests on chosen messages wins the game of Figure 11.2 with probability
at most ε.

The scheme is said EF-CMA-secure if for any T = poly and ℓ = poly there exists
ε = negl such that the scheme is (T, ℓ, ε)-EF-CMA-secure.

A C

Kp←−−−−−−−− (Kp,Ks)← setup(1λ)
∀i ∈ [1, ℓ] :

select mi
mi−−−−−−−−→
σi←−−−−−−−− σi ← sign(Ks,mi)

select m̂, σ̂
bm||bσ−−−−−−−−→ b← verify(Kp, m̂, σ̂)

A wins if b = 1 and m̂ /∈ {m1, . . . ,mℓ}.
Figure 11.2. The EF-CMA Game.

11.3 Interactive Proofs (in the Standard Model)

In this section, we recall some basic material required to understand the concept of zero-
knowledge proof of knowledge. To manage simple definitions, we restrict to the standard
model and we will extend the definitions later. Most of the material in this section was
taken from the book of Oded Goldreich [Gol01].

11.3.1 Binary Relation and Binary Language

Hard problems in cryptography may be described by a binary relation. As example, we
take the discrete logarithm problem: Let p be a prime number, G ⊆ Zp be a group, and g
be a generator of G of order q. Given a random w ∈ [0, . . . , q − 1], we compute the pair
(x,w) with x = (p, q, g,W) and W = gw ∈ G. Clearly, given w it is easy to compute W
but not reversely. We denote by DLg(W) the discrete logarithm of W in G with respect to
the generator g, in this case w. For fixed group G and generator g, we build a relation R as
follows :

RDL = {(x,w) : x = (p, q, g,W), ord(g) = q,W = gw (mod p)} .

Formally, let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation with a polynomial-size witness,
i.e., for any (x,w) ∈ R we have |w| ≤ poly(|x|). For some (x,w) ∈ R, we can see x as an

171

Sylvain Pasini

instance of some computational problem and w as the solution to that instance. w is called
a witness for x.

Let LR be a language related to the binary relation R. LR is the set of all x such that
there exists a witness w and (x,w) is in R, i.e.,

LR = {x : ∃w such that (x,w) ∈ R} .

Let R(x) denote the set of all witnesses for x ∈ LR, i.e.,

R(x) = {w : (x,w) ∈ LR} .

11.3.2 Interactive Turing Machines

An interactive Turing machine (ITM) is roughly a classical Turing machine with additional
tapes for communications. More precisely, an ITM is a deterministic machine with

• a read-only input tape,

• a read-only random tape,

• a read-only input communication tape,

• a read-write work tape,

• a write-only output communication tape,

• and a write-only output tape.

In general we do not consider an interactive Turing machine alone but a pair of machines.
Indeed, they are linked together to form an interactive system as depicted in Figure 11.3.

Let A and B be two interactive Turing machines. They are able to communicate through
their communication tapes: the input communication tapes of each machine coincides with
the output communication tape of the other one. When machine A sends a message, it
writes the message on its output communication tape, this is automatically written on the
input communication tape of the machine B who finally reads it and thus B receives the
message.

11.3.3 Interactive Proof Systems

Let (P,V) be a pair of interactive Turing machines (ITMs). We want that the prover P is
able to convince the verifier V of the validity of a true statement. For a given x, the prover
P wants to prove to the verifier V that x belongs to the language L, i.e., x ∈ L. For that,

172

Part II Chapter 11 - Definitions of Digital Signatures and Interactive Proofs

Interactive Turing
Machine
(ITM)

Interactive Turing
Machine
(ITM)

randominput

work

output

randominput

work

output

input
communication

output
communication

input
communication

output
communication

Figure 11.3. Two Connected Interactive Turing Machines: an Interactive System.

P and V will use an interactive proof with common input x denoted by proofP,V(x). At
the end, V outputs accept or reject. We want that P was able to convince V that x ∈ L.
However, we want that nobody can fool V into believing a false statement, i.e., that x ∈ L
while it is false.

Definition 11.3 (Interactive Proof System).
Let c, s : N→ [0, 1] be two functions such that c(n) > s(n)+1/poly(n) for some polynomial
poly(·). Let (P,V) be a pair of interactive Turing machines (ITMs). proofP,V(·) is an
interactive proof system for the language L with completeness bound c(n) and soundness
bound s(n) if the following conditions hold:

• Efficiency: P is unbounded, V runs in polynomial-time.

• Completeness: For any x ∈ L, V accepts in proofP,V(x) with probability at least
c(|x|).
• Soundness: For any input x /∈ L and any interactive machine P∗, V accepts in

proofP∗,V(x) with probability at most s(|x|).

11.3.4 Proof of Knowledge

Here we recall the definition of a proof of knowledge originally formalized in the plain model
by Bellare and Goldreich [BG93].

In order to formalize the notion of proof of knowledge we first need to introduce the

173

Sylvain Pasini

concept of knowledge extractor Ext. The Ext algorithm gets input x and authorization to
access the prover, while he attempts to compute w such that (x,w) ∈ R.

Definition 11.4 (Proof of Knowledge).
Let (P,V) be a pair of interactive Turing machines (ITMs). proofP(w),V(x) is a proof of
knowledge for the relation R with soundness error κ(x) if the following conditions hold:

• Efficiency: proofP,V(·) is polynomially bounded, and P and V are polynomial-time.

• Completeness: On common input x, if there exists a witness w such that (x,w) ∈ R,
then V in proofP(w),V(x) always accept.

• Soundness: Given a PPT machine P∗, let ε(x) be the probability that V accepts in
proofP∗,V(x). There exists an extractor Ext and a constant k such that for any P∗,

and any x, if ε(x) > κ(x), then ExtP
∗

(x) outputs a witness w such that (x,w) ∈ R
within expected time

O
(|x|k
ε(x)− κ(x)

)

where an access to P∗ only counts as one step.

κ(x) represents the probability that a malicious prover is able to convince an honest verifier
(without knowing the correct witness w corresponding to x) .

11.3.5 Zero-Knowledge

Consider any proof of knowledge between a prover P and a verifier V. The notion of zero-
knowledge underlines the fact that no information leaks to the verifier except the validity
of the statement. The main idea behind zero-knowledge is that any verifier should be
able to run the simulator Simzk by himself (instead of interacting with a prover). The
first consequence it that anybody may have generated the proof by himself. The second
consequence is that the transcript of the proof is by the way not a proof of an interaction
with the prover. This concept was formalized by Goldwasser, Micali, and Rackoff [GMR85,
GMR89]. Here, we recall the definitions from Barak, Lindell, and Vadhan [BLV03, BLV04]
and we distinct two cases: in the first one, the protocol is zero-knowledge until the verifier
remains honest, while, in the second one, the protocol is zero-knowledge for any (honest or
malicious) verifier.

Definition 11.5 (Honest-Verifier Zero-Knowledge).
A proof of knowledge proofP(w),V(z)(x) for a relation R is honest-verifier zero-knowledge
(HVZK) if there exists a PPT simulator Simzk such that

{
ViewV

(
proofP(w),V(z)(x)

)}
z∈{0,1}∗,x∈LR

for arbitrary w ∈ R(x)

174

Part II Chapter 11 - Definitions of Digital Signatures and Interactive Proofs

and {
Simzk(x, z)

}
z∈{0,1}∗,x∈LR

are computationally indistinguishable.

Definition 11.6 (Zero-Knowledge).
A proof of knowledge proofP(w),V(z)(x) for a relation R is zero-knowledge (ZK) if for any
PPT V∗, there exists a PPT simulator Simzk such that

{
ViewV∗

(
proofP(w),V∗(z)(x)

)}
z∈{0,1}∗,x∈LR

for arbitrary w ∈ R(x)

and {
Simzk(x, z)

}
z∈{0,1}∗,x∈LR

are computationally indistinguishable.

11.4 Interactive Proofs in the Common Reference String Model

In order to prove the security of a new design, we often need keyed cryptographic primitives.
The consequence is that parties involved in the execution of a protocol rely on a public
key. In practice we want to avoid the generation of public/private keys as well as their
transmission. The Common Reference String (CRS) model, see Section 3.4, assumes that
all implementations use the same trusted public key, denoted by crs, and the corresponding
private key is unknown by everyone. In the following, we recall some definitions from
Pass [Pas03, Pas04]. Note that in these definitions crs is assumed to be uniformly distributed.

First, we consider any proof of knowledge between a prover P and a verifier V but now
in the CRS model.

Definition 11.7 (Proof of Knowledge in the CRS model).
Let (P,V) be a pair of interactive Turing machines (ITMs), crs be any uniformly dis-
tributed CRS, and κ(x) be a real valued function. proofP(w),V(x, crs) is a proof of knowl-
edge in the CRS model for the relation R with soundness error κ(x) if the following
conditions hold:

• Efficiency: proofP,V(·) is polynomially bounded, and P and V are polynomial-time.

• Completeness: On common input (x, crs), if there exists a witness w such that
(x,w) ∈ R, then V in proofP(w),V(x, crs) always accept.

• Soundness: Given a PPT machine P∗, let ε(x) be the probability that V accepts
in proofP∗,V(x, crs). There exists an extractor Ext and a constant k such that for

175

Sylvain Pasini

any P∗, and any x, if ε(x) > κ(x), then ExtP
∗

(x) outputs a witness w such that
(x,w) ∈ R within expected time

O
(|x|k
ε(x)− κ(x)

)

where an access to P∗ only counts as one step.

Here we extend the notion of zero-knowledge from the standard model to the CRS model.
Clearly, now, all participants have access to the (public) string crs.

Definition 11.8 (Zero-Knowledge in the CRS Model).
Let crs be any uniformly distributed common reference string (CRS). A proof of knowledge
proofP,V(·) for a relation R is zero-knowledge in the CRS model if for any PPT V∗,
there exists a PPT simulator Simzk such that

{
ViewV∗

(
proofP(w),V∗(z)(x, crs)

)}
z∈{0,1}∗,x∈LR

for arbitrary w ∈ R(x)

and {
Simzk(x, z)

}

z∈{0,1}∗,x∈LR

are computationally indistinguishable.

11.5 Deniability in Zero-Knowledge Proofs

As said before, the main idea behind zero-knowledge is that any verifier should be able to
run the simulator by himself (instead of interacting with a prover). However in the CRS
model, the simulator Simzk is able to choose the crs public key while no verifier is able to do
that in reality. We conclude that the above standard definition for zero-knowledge in the
CRS model is not exactly what we are looking for.

Here we recall the concept of deniability. Informally, deniability means that any transcript
of protocol should not yield an evidence of interaction with P. In the CRS model, deniable
zero-knowledge is different from the (standard) zero-knowledge in the sense that in the
deniable case the simulator Simzk is not able to choose crs. This difference solves the above
issue.

Definition 11.9 (Deniable Zero-Knowledge in the CRS Model).
Let crs be any uniformly distributed common reference string (CRS). A proof of knowledge
proofP,V(·) for a relation R is deniable zero-knowledge in the CRS model if for any PPT
V∗, there exists a PPT simulator Simzk such that

{
crs,ViewV∗

(
proofP(w),V∗(z)(x, crs)

)}
z∈{0,1}∗,x∈LR

for arbitrary w ∈ R(x)

176

Part II Chapter 11 - Definitions of Digital Signatures and Interactive Proofs

and {
crs,Simzk(x, z, crs)

}
z∈{0,1}∗,x∈LR

are computationally indistinguishable.

While the above definition applies for the CRS model, we note that it is the same case in
the random oracle (RO) model. Indeed, in the definition of zero-knowledge in the random
oracle model, the simulator Simzk is able to choose the random oracle H. As in the CRS
model, in reality it is not the case.

Here, we give a generic definition for deniable zero-knowledge which is effective in all three
models: the standard model, the common reference string model, and the random oracle
model.

Definition 11.10 (Deniable Zero-Knowledge Proof of Knowledge).
Let crs be any common reference string (CRS). Let H be a random oracle. Let κ(x) be a
real valued function. proofPH(w),VH(x, crs) is a proof of knowledge for the relation R with
soundness error κ(x) if the following holds :

• Efficiency: proofP,V(·) is polynomially bounded, and P and V are polynomial-time.

• Completeness: On common input (x, crs), if there exists a witness w such that
(x,w) ∈ R, then V in proofPH(w),VH(x, crs) always accept.

• Soundness: Given a PPT machine P∗H, crs, and H, let ε(x) be the probability that
V accepts in proofPH(w),VH(x, crs). There exists an extractor Ext and a constant k

such that for any crs, any H, any P∗, and any x, if ε(x) > κ(x), then ExtP
∗

(x)
outputs a witness w such that (x,w) ∈ R within expected time

O
(|x|k
ε(x)− κ(x)

)

where an access to P∗ only counts as one step.

A proof of knowledge proofPH,VH(·) for a relation R is deniable zero-knowledge if for any

PPT V∗, there exists a PPT simulator SimH
zk (with access to H) such that

{
crs,H,ViewV∗

(
proof

PH(w),V∗H(z)(x, crs)
)}

z∈{0,1}∗,x∈LR

for arbitrary w ∈ R(x)

and {
crs,H,SimH

zk(x, z, crs)
}

z∈{0,1}∗,x∈LR

are computationally indistinguishable.

177

Sylvain Pasini

Clearly, when crs and H are constant and H is polynomially computable, we obtain the
definition in the standard model. When only crs is constant, we obtain the random oracle
model. When only H is constant and polynomially computable, we obtain the CRS model.
When V∗ is restricted by V, i.e., V∗ = V, we obtain the honest verifier zero-knowledge
(HVZK) definition.

It seems that the need for deniability makes the CRS model collapse down to the plain
model (see Pass [Pas04]). Indeed, there exists an efficient generic transformation of de-
niable zero-knowledge protocols from the CRS model into the plain model. However this
transformation adds some more rounds which increases the round complexity.

So, deniable ZK protocols in the CRS model may still be attractive in practice.

178

Chapter

TWELVE

Preserving the Privacy of Signed Documents

Consider Alice has a pair of keys, i.e., a private signing key and a public verification key.
Alice would like to prove to Bob the authenticity of one of her documents d. She signs
d using her signing key, obtains the signature σ, and sends both d and σ to Bob. If the
signature is universally verifiable, Bob can now check the validity of the document d by
verifying that the signature σ is correct (with respect to the verification key from Alice).

The above scenario is occurring many times every day, but we often neglect that Bob can
publish the document d and its corresponding signature σ. Proceeding in that way, all the
world may know the existence of d, but worse the world is also convinced that the document
d was treated as is by Alice. At the beginning, Alice just wanted to prove the authenticity
of her document d to Bob and not to the rest of the world! One of the issues of digital
signatures is that the signature may prove the authenticity of private document and in some
situations this transferability leads to privacy issues.

Monnerat, Vaudenay, and Vuagnoux [MVV07, Vau07, VV07] studied the e-passport stan-
dards and identified the privacy issue from leaking of signatures on private data. See Sec-
tion 12.7 for more details on e-passports. For instance, data such as official name, true
date of birth, citizenship and a facial image together with a digital signature could easily be
released on the Internet or sold by a malicious verifier, allowing to convince anybody of their
authenticity. None of these data is really confidential. For instance, the true date of birth of
some person can fairly be estimated or propagated by gossiping. The person can still claim
that the gossiped date of birth is incorrect and keep it private. What is more sensitive is

179

Sylvain Pasini

a proof that a date of birth is true because the person can no longer deny evidence that
the proof is correct. For this reason, the authors suggested to use non-transferable proof of
signature knowledge. So, the passport can convince the border patrol of the authenticity of
the data without revealing the signature and, therefore, strengthening privacy.

In our scenario, we have a signer (the national authority), a prover (the e-passport), and
a verifier (the border patrol). Clearly, the passport should not know the signing key which
is kept secret by the national authority.

Full non-transferability requires a public-key infrastructure (PKI) for verifiers. Certificate
verification should be secured to avoid transfer attacks using rogue keys. The EAC stan-
dard [MRT04b] proposes the use of a PKI for border patrols, however this is not enough
for the privacy issues we have in mind. One problem thought is that this PKI is meant
for access control of more sensitive data or services. Although, basic access shall be widely
available. In addition, the key of verifiers in EAC will only be checked for verifiers in a
country with agreements with the home country. That is, non-transferability would only be
enforced in friendly countries but not in others. This seems pretty weird.

For these reasons, we want to avoid PKI for verifiers and we will focus on a weaker form
of non-transferability which holds after the protocol is complete. That is, we enforce offline
non-transferability which is equivalent to deniability (sometimes called self-simulatability).
Zero-knowledge proofs are inherently deniable in the plain model while zero-knowledge pro-
tocols in the common reference string (CRS) model or the random oracle model (ROM) are
not necessarily deniable. However, protocols in the CRS or ROM are more attractive for effi-
ciency reasons. So, we have to consider the notion of deniable zero-knowledge [Pas03, Pas04].

The above reasons motivated the study of non-transferable proof of signature knowledge
with a strong focus on the efficiency. The goal is to find a protocol which can be implemented
on e-passports (see Section 12.7) for proving the knowledge of a valid signature to a border
patrol in a setting where there is no PKI for border patrols and these may be dishonest.
Protocols for proof of knowledge are already well studied, see [CDM00]. Here, we try to
increase the efficiency and inter-operability to accommodate popular standards of digital
signature. The international e-passport standard [MRT04a] proposes the use of RSA- and
ElGamal-based signature schemes. The EAC [MRT04b] extension suggests that e-passports
are able to run ECDH protocols. So, there is a little place for public-key cryptography.

In this chapter, we propose a solution to protect the privacy. Our solution consists for
Alice in proving to Bob that the signature is valid instead of revealing it. So, in Section 12.3,
we introduce the definition of an offline non-transferable authentication protocol (ONTAP).
We propose a generic transform of a signature scheme into an ONTAP by using a deniable
ZK proof of knowledge. In order to build secure ONTAP, we study strong constructions of
proof of knowledge in Section 12.4. In particular, we study a generic transform of Σ-protocols
into this type of interactive proof. Unsurprisingly, our generic transform just adds a commit
message at the beginning and allows to avoid vulnerability with respect to malicious verifiers.

180

Part II Chapter 12 - Preserving the Privacy of Signed Documents

In Section 12.5, we apply ONTAP to standard signature like RSA- and ElGamal-based
schemes. We propose ONTAP protocols which can be efficiently executed in constrained
environments such as e-passports. In particular, we give an efficient example based on
the Guillou-Quisquater protocol for RSA-based signatures and another example based on
the Schnorr protocol for ElGamal-based signatures (being compatible with PKCS#1v1.5,
ISO/IEC 9796, RSA-PSS, Schnorr, DSA, ECDSA, and others). Finally, to motivate our
constructions, we give a short overview on e-passports in Section 12.7.

We published the ONTAP primitive as well as the efficient RSA- and ElGamal-based
implementations in [MPV09].

12.1 Related Work

Non-transitive signatures [Des88, OO91] and deniable message authentication [DDN03] also
deal with transferability issues but do not immediately apply for a three-party settings
where an intermediate player (e.g., the e-passport) shows to another one that some data
was authenticated by an authority. Remember that the e-passport should be able to prove
the validity of a signature without knowing the private signing key (which will be the national
authority private key).

Undeniable signatures [CvA90, GKR00, MV04] only consider a two-party setting. In order
to confirm or deny a signature, the prover must know the secret key. Clearly, a passport
cannot know the authority secret key.

With undeniable signatures, the signer cooperation is essential. This motivated the intro-
duction of designated confirmer signatures but mostly to protect the verifier from signers
who would refuse to participate in verification protocols. This is not our case and the
security definitions are very different since they protect against different threats.

Asokan, Shoup, and Waidner [ASW98, ASW00] proposed a solution to cross-exchange
signatures between two parties in a fair way (using a trusted third party in a fair way). For
that, they propose a way to transform a signature scheme into a verifiable escrow scheme.
A verifiable escrow scheme is based on a homomorphism and allows to produce an escrow
signature from a signature. Then, given the escrow signature, one can verify that it is really
a signature without obtaining the signature. Finally, someone can recover the signature
from the escrow signature by using the secret key. One drawback for our application is that
the escrow signature is verifiable, thus it is some kind of signature and not deniable.

Non-transferability was studied by Jakobsson et al. [JSI96, CM00] and they introduced
designated-verifier proofs. The idea is to designate the signature to a verifier (using its
public-key) and then only the designated-verifier can be convinced on the validity of the
signature. One drawback is that the verifier must be known at the signature time. Later,
Steinfeld et al. [SBWP03] introduced Universal Designated-Verifier Signature (UDVS). This

181

Sylvain Pasini

scheme applies to a three-party setting: signer, designator, and verifier. Universal refers to
that any designator who obtained a universally verifiable signature from the signer is able
to designate it to a verifier. This relies on a PKI for verifiers. Compared to designated-
verified proofs, an UDVS allows to produce signatures without knowing the verifier public-
key and the signature will be designated to one verifier later (which is not possible with
designated-verifier proofs). However, the method for having every verifier attached to a
public key is an overkill. This motivated Baek et al. [BSNS05] to define a weaker notion
of non-transferability and they published the Universal Designated Verifier Signature Proof
(UDVSP). The primitive is similar to the concept of UDVS except that no signature is
given to the verifier. The designator does not need to know the verifier, only a signature
proof is given to the verifier. This primitive assumes that verifiers are honest. Clearly, our
application scenario does not meet this assumption and this construction does not remain
secure when the verifiers may be malicious [LW06, SSNB07]. In addition, the proposed
UDVS or UDVSP constructions rely on bilinear mappings which seems not very easy to
implement in the case of e-passports.

Recently, Shahandashti, Safavi-Naini, and Baek [SSNB07] worked on Credential Owner-
ship Proofs (COP). There have some similar features as non-transferable signature. How-
ever, COP allow users to copy/share the credits which is clearly not desirable in the case
of e-passports. They also protect against “double spending” which is not necessary in our
case.

12.2 On Non-Transferability

Consider a binary relation R with elements of the form (x,w) and any prover P able to
prove his knowledge of some witness w. Non-transferability aims to prevent a malicious
verifier V∗ to convince another party, say Ṽ, that P knows the witness w.

A zero-knowledge protocol is necessary but not sufficient to avoid the transfer of a proof.
Namely, a straightforward way to transfer a proof may be achieved by V∗ in forwarding
messages from P to Ṽ and vice versa. P does not notice that he is convincing Ṽ instead of
V∗. Such an attack is often called a relay attack, also known as a mafia fraud attack.

We propose two flavors of non-transferability: online versus offline non-transferability.
Both avoid the transfer of the proof after the proof terminated but only online non-
transferability forbids the transfer of the proof during the execution of the protocol. We may
also consider a semi-offline case. In this situation, V∗ and Ṽ are allowed to communicate
before but not during the protocol execution between V∗ and P. Since V∗ and Ṽ have no
information before the protocol execution, talking before is equivalent to talking after the
protocol. So, the semi-offline case is equivalent to the offline one.

Definition 12.1 (Non-Transferability).
Consider an honest prover P with respect to an interactive (2-party) protocol proof for a

182

Part II Chapter 12 - Preserving the Privacy of Signed Documents

binary relation R.

We say that proof is online non-transferable if for any interactive PPT V∗ there exists
a PPT Sim, called the simulator, such that for any interactive PPT Ṽ the two following
protocol views

View eV

(
P(x,KV

∗

p , w)↔ V∗(x,KV
∗

p ,KV
∗

s)↔ Ṽ(x,KV
∗

p)
)

and

View eV

(
Sim(x,KV

∗

p ,KV
∗

s)↔ Ṽ(x,KV
∗

p)
)
.

indexed by all pairs (x,w) ∈ R are indistinguishable with respect to |x|1, where KV
∗

p and

KV∗

s represent the public and private keys of V∗.

We say that proof is offline non-transferable if it satisfies the same property under the
additional rule that V∗ and Ṽ are only allowed to communicate after the interaction
between V∗ and P is complete.

In Definition 12.1 we consider non-transferability only for the pairs in the relation. In our
context, we do not care about a pair (x,w) 6∈ R, since it corresponds to an invalid signature.
Namely, transferring the fact that a prover possesses an invalid signature is without interest.

Before, we saw that the zero-knowledge property on the interactive protocol is a neces-
sary but not sufficient condition to achieve non-transferability. It is true for online non-
transferability, but in reality a zero-knowledge protocol is enough to ensure offline non-
transferability.

12.3 Offline Non-Transferable Authentication Protocol (ONTAP)

As said before, one of the issues of digital signatures is that the signature may prove the
authenticity of a private document. By consequent, digital signatures may lead to privacy
issues. In this section, we propose a solution to protect the privacy which consists in proving
the knowledge of the signature instead of revealing the signature itself.

Our definition simplifies and strengthens the definition of Baek et al. [BSNS05] to address
offline non-transferability with a malicious verifier.

Definition 12.2 (ONTAP).
We define an offline non-transferable authentication protocol (ONTAP) by the two fol-
lowing algorithms and the interactive verification protocol:

1For instance, the statistical distance or the advantage of the best distinguisher should be negligible in
|x|.

183

Sylvain Pasini

• The (Kp,Ks) ← setup(1λ) algorithm generates a key pair given a security parame-
ter λ.

• The σ = (σp, σs) ← sign(Ks,m) algorithm outputs a signature σ ∈ S of a message
m ∈M. σ is split in two parts: a public part σp and a private part σs.

• The iProofP(σs),V(Kp,m, σp) protocol allows a prover P to convince a verifier V that
he knows a σs to complete σp in a valid signature for m. At the end, V accepts or
rejects.

The scheme is complete if for any (Kp,Ks)← setup(1λ), any message m ∈M, and any
(σp, σs)← sign(Ks,m), then V always accepts in the iProofP(σs),V(Kp,m, σp) protocol.

The UDVSP [BSNS05] uses a KeyGen algorithm which is equivalent to our setup algorithm.
The Sign algorithm outputs a classical signature universally verifiable by using the Verify
algorithm, there is a Transform algorithm which generates a modified signature (with a public
and secret part) from the universally verifiable one. Our sign algorithm may be built with
the Sign and Transform algorithms from the UDVSP and conversely. We removed the Verify
algorithm since it is useless with our definition. Finally, there is an interactive proof IVerify
as our iProof. So, the two definitions are conceptually equivalent. The main difference comes
from the security requirements.

The ONTAP is secure if it satisfies the next two definitions.

Definition 12.3 (Offline Non-Transferability of ONTAP).
Consider an adversary A against the ONTAP. A plays a game with a challenger C. The
goal of A is to get evidence that some message m̂ was signed. During a training phase, A
is allowed to query a sign oracle denoted Sign. After the training phase, A selects some
m̂, C signs it and reveals σ̂p. Then, A runs a session of iProofP(bσs),A(Kp, m̂, σ̂p) protocol.
At the end of the game, A outputs all inputs queried to Sign and its state λ.

We introduce Sim which plays the same game but selects no m̂ and runs no iProof
protocol.

The ONTAP scheme is said offline non-transferable if for any adversary A there exists
a simulator Sim such that their output in the game of Figure 12.1 are computationally
indistinguishable.

Definition 12.4 (Unforgeability of ONTAP).
Consider an adversary A against the ONTAP. A plays a game with a challenger C. The
goal of A is to convince C by running the iProof protocol that he knows σ̂s to complete σ̂p

in a valid signature for m̂.

During a training phase, A is allowed to query a sign oracle denoted Sign. On input
message m ∈ M, Sign answers the complete valid signature (σp, σs). After this training

184

Part II Chapter 12 - Preserving the Privacy of Signed Documents

A (or Sim) C

Kp←−−−−−−−−−−−−−−− (Kp,Ks)← setup(1λ)
∀i ∈ [1, ℓ] :

select mi
mi−−−−−−−−−−−−−−−→

σp,i‖σs,i←−−−−−−−−−−−−−−− Sign

skipped by Sim:

select m̂
bm−−−−−−−−−−−−−−−→ (σ̂p, σ̂s)← sign(Ks, m̂)

bσp←−−−−−−−−−−−−−−−
iProofC(bσs),A(Kp, bm,bσp)

←−−−−−−−−−−−−−→
Prover

output m1‖ . . . ‖mℓ‖λ
Figure 12.1. ONTAP Non-Transferable Game.

phase, A selects a m̂ and a σ̂p with m̂ not sent to Sign. A simulates a prover to an honest
verifier as depicted in Figure 12.2.

The ONTAP scheme is said unforgeable if no PPT adversary A can make the honest
verifier accepting in the game of Figure 12.2 with non-negligible probability.

Clearly, Definition 12.4 implies classical unforgeability in the sense of Definition 11.2 since
anyone able to forge a signature is also able to win the game of Fig. 12.2.

In the ONTAP unforgeability definition (Definition 12.4), we could give access to non-
concurrent prover oracles to the adversary A∗. Suppose it is the case and we denote them
by Proverj’s. Each oracle simulates an honest prover P in iProofP(σ∗

s,j),A∗(Kp,m
∗
j , σ

∗
p,j).

Each oracle Proverj is setup with a given message m∗
j and several iProof executions can be

requested for the same m∗
j and some signature (σp, σs). Executions to the same Proverj

cannot be performed concurrently. This definition of unforgeability can be reduced to Def-
inition 12.4 which uses no prover oracle. Suppose A∗ is limited to m Prover oracles. We
split A∗ in several adversaries A∗

1 to A∗
m playing modified games. Each A∗

i plays with C
where all Proverj for j 6= i are replaced by a query to the sign oracle and a simulation
for the iProof protocol. So, only the Proveri in the game with the adversary Ai uses a
Prover oracle. Clearly, Pr[A∗ succeeds] ≤ ∑m

i=1 Pr[A∗
i succeeds]. Now, we define adver-

saries A′
i: each one plays the same game than A∗

i except that Proveri is simulated by
Sim as defined in Definition 12.3. By using the offline non-transferability property, the
state of adversary A∗

i is computationally indistinguishable from the one of adversary A′
i,

so Pr[A∗ succeeds] ≤ ∑m
i=1 Pr[A′

i succeeds] + negl. This proves that introducing a Prover

185

Sylvain Pasini

A C

Kp←−−−−−−−−−−−−−−− (Kp,Ks)← setup(1λ)
∀i ∈ [1, ℓ] :

select mi
mi−−−−−−−−−−−−−−−→

σp,i‖σs,i←−−−−−−−−−−−−−−− Sign

select m̂, σ̂p bm‖bσp−−−−−−−−−−−−−−−→
iProofA(bσs),C(Kp, bm,bσp)

←−−−−−−−−−−−−−→
Verifier

return Verifier output

A wins if Verifier accepts and m̂ not queried to Sign.

Figure 12.2. ONTAP Unforgeability Game.

oracle in Definition 12.4 does not strengthen our unforgeability notion when offline non-
transferability is granted.

Theorem 12.5 (ONTAP Construction).
Let S be a classical digital signature scheme in which the sign algorithm outputs a signature
splittable in two parts: a public part σp and a private part σs. We assume there exists an
algorithm simulate such that σp ← simulate(Kp,m) is computationally indistinguishable
from the one generated by sign(Ks,m). Let iProof be a deniable zero-knowledge proof of
knowledge for witness σs in the relation

R(Kp‖m‖σp, σs)⇐⇒ verify(Kp,m, σp‖σs) .

If S is EF-CMA-secure, then the ONTAP based on setup, sign, and iProof is secure.

The deniable zero-knowledge property of the iProof protocol guarantees that the proof is
offline non-transferable. So, the ability to prove that σs is known by someone is not possible
after the protocol is complete.

The required signature scheme S should be in the class C defined in [SSN08] which includes
many signature schemes. Note that there exists a Σ-protocol for any signature scheme since
any NP relation has one [SSN08]. However, such a protocol is in general not efficient.
Thanks to the next section, we transform Σ-protocols into denial ZK proofs of knowledge.

Proof.
We start with the constructed ONTAP scheme and consider the ONTAP security games.
Assuming that S is EF-CMA-secure, the public signature is simulatable, and iProof is de-
niable ZK, we want to show that the ONTAP is unforgeable in the sense of Definition 12.4
and offline non-transferable in the sense of Definition 12.3.

186

Part II Chapter 12 - Preserving the Privacy of Signed Documents

Unforgeability: We consider a T -time adversary A playing the ONTAP unforgeability
game with a challenger C as depicted in Figure 12.2. A is limited by ℓ queries to the oracle
Sign.

We split A in two parts: A1, which represents the three first moves of A in Figure 12.2
and outputs a state λ, and A2(λ), which represents the last two moves of A.

Thanks to the soundness, Ext fed with A2(λ) produces σ̂s such that verify(Kp, m̂, σ̂p‖σ̂s)

holds. Hence, running λ ← ASign
1 , then ExtA2(λ) wins in the EF-CMA game which is not

possible.

Offline Non-Transferability: We construct Sim by runningA until m̂ is submitted. Then,
Sim runs σ̂′p ← simulate(Kp, m̂) and continues to simulate A by feeding it with σ̂′p. Clearly, A
with the simulated σ̂′p reaches a state which is indistinguishable from A with a true signature
σ̂p. Then, we use the simulator for iProof to simulate the final state (and output) from A.

12.4 Deniable ZK from Σ-Protocols

Generally, Σ-protocols are designed to prove the knowledge of a witness in a binary relation.
The notion of Σ-protocol represents an important tool for the design of zero-knowledge
protocols. It generalizes well-known proofs of knowledge such as Guillou-Quisquater [GQ88,
GQ90] or Schnorr [Sch90, Sch91] protocols. Below, we first briefly recall the required material
and refer to Damg̊ard [Dam05] for a detailed treatment.

(Classical) Σ-protocols are only honest verifier zero-knowledge (HVZK) in the sense of
Definition 11.5. Clearly, in many applications we cannot assume that verifiers will be honest.
So, later, we will present a generic construction allowing to strengthen Σ-protocols. It
transforms any Σ-protocol into a deniable zero-knowledge proof of knowledge in the sense
of Definition 11.10 either in the standard, CRS, or RO model.

12.4.1 Σ-Protocols

A Σ-protocol is a special 3-move honest-verifier zero-knowledge (sHVZK) proof of knowledge
between a prover P and a verifier V for a relation R. We recall that for a pair (x,w) ∈ R,
x is a common input for P and V and w is a private input for P. A Σ-protocol consists of
three moves: a, e, and z where the first is from P to V. We usually call the three exchanged
messages the transcript and we denote it by (a, e, z). We call the transcript “accepting”
if an honest verifier V would accept the corresponding interactive proof execution. In Σ-
protocols, e is a random bit-string which is (for the honest verifier) independent from a.

187

Sylvain Pasini

To fully characterize a Σ-protocol, we specify the algorithms which generate a and z, the
domain of e, and the verifying algorithm executed by the verifier at the end. Let us denote
them by PR1, PR2 and VER respectively. Finally, a Σ-protocol can be formally described as
depicted in Figure 12.3 where the notation ̟P (resp. ̟V) represents the random tape of P
(resp. of V).

P V

input: w common input: x

random tape: ̟P random tape: ̟V

a = PR1(x,w;̟P)
a−−−−−−−−→
e←−−−−−−−− e ∈u {0, 1}t

z = PR2(x,w, e;̟P)
z−−−−−−−−→ b = VER(x, a, e, z)

Figure 12.3. A Generic Σ-protocol.

In addition to the above restrictions, a Σ-protocol must achieve efficiency and completeness
following Definition 11.4, and must satisfy two additional properties: special soundness and
special HVZK (sHVZK).

Definition 12.6 (Σ-protocol).
Let (P,V) be a pair of interactive Turing machines (ITMs) and proof a 3-move protocol as
depicted in Figure 12.3. proofP(w),V(x) is a Σ-protocol for the relation R if the following
holds :

• Efficiency and completeness: See Definition 11.4.

• Special Soundness: For any x ∈ LR and any two accepting transcripts on in-
put x, (a, e1, z1), (a, e2, z2) with e1 6= e2, there exists a polynomial-time extractor
Ext(x, a, e1, e2, z1, z2) which outputs a bit-string w such that (x,w) ∈ R.

• Special HVZK (sHVZK): There exists a polynomial-time simulator Simzk which for
any x and a random e outputs a transcript (a, e, z) with identical probability distri-
bution as a transcript generated by honest P and V on input x.

The special soundness (resp. sHVZK) guarantees that a Σ-protocol is sound (resp. HVZK)
(for details, see Damg̊ard [Dam05]). Note also that the sHVZK is a restricted version of
HVZK, where the simulator cannot freely choose the message e sent by V.

188

Part II Chapter 12 - Preserving the Privacy of Signed Documents

12.4.2 Weak Σ-Protocols

We define a weaker notion of Σ-protocols as follows.

Definition 12.7 (κ(x)-weak Σ-protocol).
Let κ be a real function. A κ(x)-weak Σ-protocol is a Σ-protocol with the special soundness
property modified as follows:

For any x ∈ LR, any a, and any e ∈ {0, 1}t, there exists an unique z such that
VER(x, a, e, z) = 1. Denote z = Resp(x, a, e).

There exists a polynomial-time extractor Ext such that for any x ∈ LR, any a, and
any e1 ∈ {0, 1}t, we have

Pr
e2∈u{0,1}t

[(x,Ext(x, a, e1, e2,Resp(x, a, e1),Resp(x, a, e2))) ∈ R] ≥ 1− κ(x)

κ(x)-weak Σ-protocols are sound with soundness error κ(x). This comes from a simplified
version of the proof of Theorem 12.10 and Theorem 12.11 below. Special soundness is
achieved for κ(x) = 2−t.

In the following, we give two examples of κ(x)-weak Σ-protocols.

Example 1. The first example is the Guillou-Quisquater (GQ) protocol [GQ88, GQ90].
Let N = pq be an RSA modulus, e be the RSA public exponent, and d = e−1 (mod ϕ(N))
be the RSA private exponent. For simplicity we assume that e is prime2. Given a public
X, the GQ protocol allows to prove the knowledge of x such that X = xe mod N . The GQ
protocol is depicted in Figure 12.4.

P V

input: x common input: (N, e),X

picks y ∈u Z∗
N

Y = ye mod N
Y−−−−−−−−→
r←−−−−−−−− picks r ∈u {0, 1}t

z = yxr mod N
z−−−−−−−−→ check ze ?

= Y Xr (mod N)

Figure 12.4. The Guillou-Quisquater (GQ) Protocol.

2In practice, RSA keys use e = 3 or e = 65537.

189

Sylvain Pasini

Theorem 12.8 (The GQ Weak-Σ-protocol).
Let t be the bit-length of the second move. The GQ protocol with prime exponent e is a

⌈ 2t

e
⌉

2t -weak Σ-protocol.

Proof.
Clearly, we can define PR1, PR2, and VER. Special HVZK is straightforward: on input

(x, r), pick a random z and lets Y = ze

Xr (mod N). Here, we only need to prove that it is
κ(x)-weak. Note that given the two first moves (Y ,r), there exists an unique third move (z)
for which V will accept. It remains to prove the soundness and for that we should build an
extractor Ext which outputs the witness given two transcripts with the same first move (Y),
i.e., any (I, Y, r1,Resp(I, Y, r1)) and a random (r2,Resp(I, Y, r2)) with I = (N, e,X).

Given (N, e,X), Y , r1, r2, z1, z2 such that ze
1 = Y Xr1 (mod N) and ze

2 = Y Xr2 (mod N),
if gcd(r1 − r2, e) = 1, then we can find some integers a and b such that ae+ b(r1 − r2) = 1
by using the Extended Euclid algorithm and then can compute x = Xazb

1z
−b
2 mod N which

satisfies

xe = Xae(ze
1)

b(ze
2)

−b = Xae(Y Xr1)b(Y Xr2)−b = Xae+b(r1−r2) = X (mod N)

so a valid witness is extracted. Clearly, the GQ protocol is κ(x)-weak where κ(x) =
maxr1 Prr2 [gcd(r1 − r2, e) 6= 1] and we find that

κ(x) =

2t−1∑

k=0

1gcd(r1−k,e)6=1 Pr[r2 = k] =
1

2t
#{multiple of e in [r1, r1 + 2t − 1]} ≤ ⌈

2t

e ⌉
2t

.

Example 2. The second example is from Schnorr [Sch90, Sch91]. Let g be the generator
of a group G of prime order q. The Schnorr protocol allows to prove the knowledge of
the discrete logarithm x in G of the element X = gx. The Schnorr protocol is depicted in
Figure 12.5.

Theorem 12.9 (The Schnorr Weak-Σ-protocol).
Let t be the bit-length of the second move. The Schnorr protocol in a group of prime order
is a 2−t-weak Σ-protocol.

Proof.
As in proof of Theorem 12.8, it suffices to prove the soundness and for that we should build
an extractor Ext.

First, note that

z1 − z2 = (y + r1x)− (y − r2x) = (r1 − r2)x .

190

Part II Chapter 12 - Preserving the Privacy of Signed Documents

P V

input: x common input: (g, q),X

picks y ∈u Zq

Y = gy Y−−−−−−−−→
r←−−−−−−−− picks r ∈u {0, 1}t

z = y + rx mod q
z−−−−−−−−→ check gz ?

= Y Xr

Figure 12.5. The Schnorr Protocol.

So, a trivial extractor Ext(X,Y, r1, r2, z1, z2) exists and simply consists in computing x =
(z1 − z2)(r1 − r2)−1. Clearly, if (r1 − r2) is invertible in Zq, then Ext succeeds. Recall that
2t ≪ q and so assuming q prime, all elements are invertible except 0. The Schnorr protocol
is κ(x)-weak where κ(x) = 2−t.

12.4.3 Generic Transform of Σ-Protocols

A malicious verifier can convert an interactive Σ-protocol into a non-interactive proof fol-
lowing the Fiat-Shamir technique [FS87]. Indeed, in a Σ-protocol, the move (e) should be
independent from the move (a). However, a malicious verifier can use a random oracle R
and return e = R(x, a) where x is the common input. Them, (a, z) becomes an universally
verifiable signature for x. As a consequence, no Σ-protocol can be ZK considering malicious
verifiers [CDM00].

In this section, we show how to transform an honest-verifier zero-knowledge (HVZK)
protocol into a deniable ZK (dZK) one. For that, we should force the verifier to commit on
its challenge at the beginning of the protocol. A solution is to add a commitment step at
the beginning. The idea was proposed by Goldreich-Micali-Wigderson [GMW91] and then
reused by Goldreich-Kahan [GK96]. They prove that it is possible to achieve ZK in the
standard model with a polynomial round complexity.

Here, we want to prove that it is possible to achieve deniable ZK in the CRS or RO models
with only 4 moves. At the same time, we achieve ZK in the standard model with one extra
move. The extra move is necessary for sending the fresh public key which replaces the
common reference string. Note that Cramer, Damg̊ard, and MacKenzie [CDM00] proposed
a transform to achieve ZK but with a bigger round complexity while Damg̊ard [Dam00]
proposed an efficient construction but without deniability. Clearly, for our application,
deniability is mandatory in the CRS and RO models.

191

Sylvain Pasini

The protocol in the standard model is depicted in Figure 12.6. Clearly, the prover should
be ensured that nobody knows the trapdoor Ks. Consequently, the prover generates the
key pair himself, he gives the public key on the first (extra) move and the private key on
the last one.

P V

input: w common input: x
random tape: ̟P random tape: ̟V

R = random(̟P)

(Kp,Ks) = setup(1λ, R)
Kp−−−−−−−−→ e ∈u {0, 1}t
c←−−−−−−−− (c, d) = commit(Kp, e;̟V)

a = PR1(x,w;̟P)
a−−−−−−−−→

e = open(Kp, c, d)
d←−−−−−−−−

z = PR2(x,w, e;̟P)
z‖R−−−−−−−−→ (K̂p, K̂s) = setup(1λ, R)

check K̂p
?
= Kp

b = VER(x, a, e, z)

Figure 12.6. A Generic Transform of Σ-protocol in the Standard Model.

Theorem 12.10 (Generic Transform of Σ-protocol in the Standard Model).
Let C be a trapdoor commitment scheme, π be a κ(x)-weak Σ-protocol, and π′ be its generic
transform as depicted in Figure 12.6.

For any arbitrary large integer k, π′ is a zero-knowledge proof of knowledge in the
standard model with soundness error κ′(x) = max

(
κ(x), 1/|x|k

)
.

Clearly, if the trapdoor of the commitment scheme Ks is known by the verifier, the pro-
tocol remains honest-verifier zero-knowledge (this is essentially the Σ-protocol) but loses
deniability. Indeed, a malicious verifier could take e = OW(a) and open c to e. The re-
sponse z would become a transferable proof following the Fiat-Shamir paradigm [FS87] to
transform interactive proofs into non-interactive ones. Thus, the public key of the com-
mitment scheme Kp should be trusted by the prover who believes that the verifier does
not know the corresponding private key. In practice, a first solution is to instantiate the
protocol in the CRS model as depicted in Figure 12.7. Another costless pragmatic solution
could consist of using a hash function at the place of the commitment. This is essentially
the instantiated variant with the RO commitment scheme depicted in Figure 12.8.

Theorem 12.11 (Generic Transform of Σ-protocol in the CRS and RO Models).
Let C be a trapdoor commitment scheme (resp. the extractable RO commitment scheme).
Let π be a κ(x)-weak Σ-protocol and let π′ be its generic transform as depicted in Fig-

192

Part II Chapter 12 - Preserving the Privacy of Signed Documents

P V

input: w common input: crs, x
random tape: ̟P random tape: ̟V

e ∈u {0, 1}t
c←−−−−−−−− (c, d) = commit(crs, e;̟V)

a = PR1(x,w;̟P)
a−−−−−−−−→

e = open(crs, c, d)
d←−−−−−−−−

z = PR2(x,w, e;̟P)
z−−−−−−−−→ b = VER(x, a, e, z)

Figure 12.7. A Generic Transform of Σ-protocol in the CRS model.

P V

input: w common input: x
random tape: ̟P random tape: ̟V

e ∈u {0, 1}t, r = random(̟V)
c←−−−−−−−− c = H(e, r), d = e‖r

a = PR1(x,w;̟P)
a−−−−−−−−→

e‖r = d, c
?
= H(e, r)

d←−−−−−−−−
z = PR2(x,w, e;̟P)

z−−−−−−−−→ b = VER(x, a, e, z)

Figure 12.8. A Generic Transform of Σ-protocol in the RO model.

193

Sylvain Pasini

ure 12.7 where crs is the public key as setup in the commitment scheme (resp. in Fig-
ure 12.8 where H is a random oracle).

For any arbitrary large integer k, π′ is a deniable zero-knowledge proof of knowledge in
the CRS model (resp. in the RO model) with soundness error κ′(x) = max

(
κ(x), 1/|x|k

)
.

Proof (of Theorems 12.10 and 12.11)).
We have a Σ-protocol, denoted by π, satisfying Definition 12.6. We build a protocol, denoted
by π′, and we want to prove that it satisfies Definition 11.10.

Efficiency and completeness of the protocols of Figures 12.6, 12.7, and 12.8 are trivial. So,
we concentrate in proving the properties of soundness and deniable zero-knowledge.

Soundness. To prove that the constructed protocol π′ is sound, we need to show that
there exists an extractor Ext′ with some properties as defined in Definition 12.6. We start
the proof in the standard model.

Let π be a κ(x)-weak Σ-protocol. Recall that for any x ∈ LR, given the input x and
two random accepting transcripts (a, e1, z1) and (a, e2, z2) of the protocol π, there exists
a polynomial-time extractor Ext which outputs the witness w such that (x,w) ∈ R with
probability 1− κ(x) (over e2) (special soundness property, see Definition 12.6).

Let k be an arbitrary positive large integer. Let P∗ be any malicious prover. Let ε(x)
be the probability that P∗ passes the protocol π′ with an honest verifier V with input
x. Let κ′(x) be the soundness error of the protocol π′. By Definition 11.7 it is assumed
that ε(x) > κ′(x). We construct the extractor Ext′ as described in Figure 12.9. Thanks to

1. Ext′ picks ̟P and set up P∗ with ̟P.

2. Ext′ plays the role of the verifier and runs a complete protocol with P∗ who gives
the trapdoor at the end. If this protocol does not fail (event A1), this defines a
first transcript c, a, d1, z1‖Ks such that VER(x, a1, e1, z1) with e1 = open(Kp, c, d1)
outputs 1.

3. Ext′ picks e2 and computes d2 ← equivocate(Ks, c, e2). Ext′ runs another complete
protocol with P∗ set up with the same ̟P and uses messages c and d2. If this
protocol does not fail (event A2), this defines a second transcript c, a, d2, z2‖Ks such
that VER(x, a, e2, z2) with e2 = open(Kp, c, d2) outputs 1.

4. If one of the two protocols failed, Ext′ aborts. Otherwise, using Ext with inputs
(a, e1, z1) and (a, e2, z2), Ext′ recovers w such that (x,w) ∈ R.

Figure 12.9. The Knowledge Extractor Ext.

the property of equivocate, the extractor Ext′ simulates perfectly an honest verifier for the

194

Part II Chapter 12 - Preserving the Privacy of Signed Documents

malicious prover P∗.

It remains to prove that Ext′ runs within limited expected time as in Definition 11.10.
Given ̟P and c, both protocols are independent and succeed with the same probability, let
us denote it by

Pr[Aj |̟P, c] = p̟P,c for j = 1, 2 .

The expected value of p̟P,c over the random choice of ̟P and c is ε(x). No matter whether
Aj holds, let zj be the unique z such that VER(x, a, ej , zj) = 1. Let B the event that
Ext(a, e1, e2, z1, z2) succeeds, i.e.,

Pr[¬B] ≤ κ(x) .
Furthermore, Pr[¬B|A1] ≤ κ(x). We want to compute Pr[A1 ∧ A2 ∧ B] and we start by
writing :

Pr[A1 ∧A2 ∧B|̟P, c] = Pr[A1 ∧A2|̟P, c]− Pr[A1 ∧A2 ∧ ¬B|̟P, c] .

Focusing on the right term, we have

Pr[A1 ∧A2 ∧ ¬B|̟P, c] ≤ Pr[A1 ∧ ¬B|̟P, c] ≤ p̟P,cκ(x) ,

while the left term is
Pr[A1 ∧A2|̟P, c] = p2

̟P,c .

So, we obtain
Pr[A1 ∧A2 ∧B|̟P, c] ≥ p̟P,c(p̟P,c − κ(x)) .

Finally, we compute the expected value over the̟’s and c’s and using the Jensen’s inequality
on the function x 7→ x2, we obtain

Pr[A1 ∧A2 ∧B] ≥ ε(x)(ε(x) − κ(x)) .

We conclude that the average number of running time of Ext′ before it succeeds is

1/ε(x)

ε(x)− κ(x) .

Following Definition 11.10, it remains to prove that the following inequality

1/ε(x)

ε(x)− κ(x) ≤
|x|k

ε(x)− κ′(x)

is true for any ε(x) > κ′(x). It is the case when κ′(x) = max
(
κ(x), 1/|x|k

)
.

Note that in the standard model (Figure 12.6), Ext′ learns the trapdoor when event A1

holds.

In the case of the CRS model, the extractor Ext′ can be assumed to know the trapdoor of
the commitment (see Definition 11.7).

195

Sylvain Pasini

In the case of the RO commitment, the proof is essentially the same: Ext′ creates two
entries H(e1, r1) = H(e2, r2) = c in the H table where r1 and r2 are random values from
the RO commitment (see Section 3.5.9.1). Then, it executes both protocols by using one
entry for each. If by any chance P∗ queries H with the other, the extraction fails. But this
happens with negligible probability.

Deniable Zero-knowledge. First, note that deniable zero-knowledge (dZK) and zero-
knowledge (ZK) are equivalent in the standard model. So, in this proof we will show that
all three protocols are dZK. This will imply that the protocol of Figure 12.6 is ZK in the
standard model.

We need to build a simulator Simzk able to simulate the interactions between an honest
prover P and any verifier V∗ as described in Definition 11.10. In the CRS model, the
simulator Simzk is no longer allowed to generate the common reference string crs. Let
Kp = crs be any uniformly distributed random string. Kp is given to all: to the prover P,
to the verifier V∗, and to the simulator Simzk.

Recall that given any x ∈ LR and a random e there exists a polynomial-time simulator
Sim′

zk which outputs a transcript (a, e, z) which has identical probability distribution than
a transcript generated by the honest prover P and an honest verifier V on input x.

We construct the simulator Simzk as depicted in Figure 12.10. Clearly, Simzk always
returns a complete protocol view from V∗. It is either of type I (̟V,Kp, x, a) or of type II
(̟V,Kp, x, a, z). The̟V distribution is perfect as well as the view of type I. Let A̟V,Kp,x be
the set of all possible a such that V∗(̟V,Kp, x, a) returns a valid c. The distribution of a′ is
the marginal distribution from PR1 conditioned to set A̟V,Kp,x. So, it is perfectly simulated
as well. Finally, the unique z′ is well simulated (the negligible probability of breaking the
commitment has a negligible influence on the distribution) so we have a computationally
indistinguishable simulator.

We still have to show that the average number of rewindings is polynomial. Let ̟V be a fix
random tape of V∗. Given x ∈ LR, for w s.t. (x,w) ∈ R we consider V∗

̟V
interacting with

P(x,w). We denote by p = p̟V
(x) the probability that the commit value c is incorrectly

opened to P. Since the distribution of a can be simulated, p̟V
(x) does not depend on w.

Let C be the number of partial or complete executions that Simzk do with V∗. Clearly,
when C = 1 the first commitment was incorrect and we have Pr[C = 1] = p. When we have
C = c, the first and the last commitment were correct, but there were c − 2 incorrect ones
in the middle. So, Pr[C = c] = (1− p) · pc−2 · (1− p) for c ≥ 2. Clearly, the probability that
we need c iterations before reaching step 5(c)ii is

Pr[C = c] = (1− p)2pc−2 for c ≥ 2 .

Incidentally, the probability to stop before step 5a is p. The expected number of iterations is
constant. The expected complexity, i.e., the expected number of rounds over the distribution

196

Part II Chapter 12 - Preserving the Privacy of Signed Documents

1. Simzk launches V∗ with input x and a fresh random tape ̟V.

2. Simzk receives c from V∗.

3. Simzk picks a random a using the same distribution than PR1(·). Thanks to the special
HVZK property, this can be simulated by using Sim′

zk and obtaining (a, e∗, z∗).

4. Simzk then gives a to V∗.

5. Simzk receives d from V∗, computes e = open(Kp, c, d), and checks e
?
6=⊥.

• If the commitment is not valid, i.e., e =⊥, then Simzk stops the simulation and
releases the transcript (̟V,Kp, x, a).

• Otherwise, i.e., if the commitment is valid,

(a) Simzk rewinds V∗ with the same random tape ̟V and receives the same c
from V∗ since ̟V is unchanged. Simzk can thus guess that c will again open
to e.

(b) Simzk gives x and e to the simulator Sim′
zk in order to obtain a “good”

transcript (a′, e, z′). Simzk sends a′ to V∗.

(c) Simzk receives d′ from V∗, computes e′ = open(Kp, c, d
′), and checks e′

?
6=⊥.

– If the commitment is not valid, i.e., e′ =⊥, then Simzk goes back to
step 5a.

– Otherwise, i.e., if the commitment is valid,

i. If e 6= e′ (double opening of c), Simzk aborts.
ii. Simzk finishes by yielding (̟V,Kp, x, a

′, z′) of the last interaction with
V∗.

Figure 12.10. The Simulator Simzk.

197

Sylvain Pasini

of the random tape, is computed by

E[C] =

∞∑

c=0

cPr[C = c]

= Pr[C = 1] +
∞∑

c=2

c · Pr[C = c]

= p+ ·
∞∑

c=2

c · (1− p)2pc−2

= p+ (1− p)2 ·
∞∑

j=0

(j + 2) · pj .

We can now compute the real value of the expected value. We first split the sum in two
parts as follows:

E[C] = p+ (1− p2) ·




∞∑

j=0

(j + 1) · pj +

∞∑

j=0

pj


 .

Then, we integrate the left sum in order to easily compute the value:

E[C] = p+ (1− p2) ·


 d

dp




∞∑

j=0

pj+1


 +

∞∑

j=0

pj




= p+ (1− p2) ·


 d

dp




∞∑

j=0

pj − 1


 +

∞∑

j=0

pj




= p+ (1− p2) ·
(

d

dp

[
p

1− p

]
+

1

1− p

)
.

Finally, we find a constant expected running time:

E[C] = p+ (1− p2) ·
(

1

1− p +
p

(1− p)2 +
1

1− p

)

= p+ p+ 2 · (1− p)
= 2 .

So, the expected complexity, i.e., the expected number of rounds over the distribution of
the random tape, is E[C] = 2. This proves that the simulator runs in expected polynomial
time.

198

Part II Chapter 12 - Preserving the Privacy of Signed Documents

12.5 ONTAP Constructions in Practice

12.5.1 ONTAP with a Generic RSA Signature

We propose ONTAP-RSA: an ONTAP scheme which is generic for RSA-based signatures.
It is based on a zero-knowledge variant of the GQ protocol.

Consider h ← Hseed(m) be a formatting function and b = V(h,m) be a check function
returning 1 if the formatted h is consistent with the message m, and 0 otherwise.

Definition 12.12 (Generic RSA Signature Scheme).
A generic RSA signature with security parameter k works in a group Z∗

N with N = pq

where p, q are two k
2 -bit random prime numbers. Let e, d such that ed ≡ 1 (mod ϕ(N))

and e is prime. Since several variants are commonly used we do not specify further the
generation algorithm. The private key is Ks = d and the corresponding public key is
Kp = (N, e)

The signature of a message m consists of the tuple σ = (σp, σs). The algorithm picks
a random seed, computes the formatted message σp = Hseed(m), computes the signature
σs = σd

p mod N by using the private key Ks, and outputs σp and σs.

There exists a verification algorithm verify(Kp,m, σp, σs) which outputs 1 if the signature
is valid, i.e., if V(σp,m) = 1 and σe

s mod N = σp, and 0 otherwise.

Clearly, the PKCS#1v1.5, ISO/IEC 9796, RSA-PSS standards all fit into this category.

The iProof protocol works as depicted in Figure 12.11. Note that Kp is the public key
related to the signature scheme while crs is the one related to the commitment scheme. The
way to adapt to the plain model or random oracle model is straightforward.

P V

input: σs common input: crs,Kp,m

σp = σe
s mod N pick r ∈u {0, 1}t

pick y ∈u Z∗
N

c←−−−−−−−− (c, d) = commit(crs, r)

Y = ye mod N
Y ‖σp−−−−−−−−→ check V(σp,m)

?
= 1

r = open(crs, c, d)
d←−−−−−−−−

z = yσr
s mod N

z−−−−−−−−→ check ze ?
= Y σr

p (mod N)

Figure 12.11. The iProof Protocol for ONTAP-RSA.

199

Sylvain Pasini

Theorem 12.13 (ONTAP-RSA).
Assume that the RSA-based signature is EF-CMA-secure and that the commit(·) is a trap-
door commitment scheme in the CRS model (resp. the RO commitment scheme). The
digital signature scheme added to the signature proof iProof of Figure 12.11 forms an ON-
TAP scheme as defined in Definition 12.2 in the CRS model (resp. in the RO model).

The soundness error is
⌈ 2t

e
⌉

2t .

With an extra round we obtain an ONTAP in the standard model as depicted in Fig-
ure 12.6.

Proof.
Clearly, there exists an algorithm simulate(Kp,m) which outputs a σp computationally in-
distinguishable from the one generated by sign(Ks,m), i.e., σp ← Hseed(m). Thanks to
Theorem 12.5, we only need to prove that the signature scheme is unforgeable and the
protocol deniable zero-knowledge. Unforgeability is already assumed. Efficiency and com-
pleteness of iProof are trivial. Soundness and deniable zero-knowledge properties of iProof
are proven by Theorem 12.8 and by Theorem 12.11.

12.5.2 ONTAP with a Generic ElGamal Signature

In this section we show how to build an interactive proof for any ElGamal based signature
scheme. For that, we first define a generic ElGamal signature scheme as follows:

Definition 12.14 (Generic ElGamal).
A generic ElGamal signature scheme works in a group G with a generator g ∈ G of order
q. The private key is Ks = x ∈u Zq and the corresponding public key is Kp = y = gx.

The signature of a message m consists of the tuple σ = (u, v, ξ, s) ← sign(Ks,m). This
tuple is split in two parts: a public part σp = (u, v, ξ) which can be perfectly simulated
without Ks and a secret part σs = s.

There exists a verification algorithm verify(Kp,m, σp, σs) which outputs 1 if the signature
is valid, i.e., when us = v and ver(Kp,m, σp) = 1, and outputs 0 otherwise for some ver
algorithm.

ElGamal [ElG85] (with a group of prime order), Schnorr [Sch90, Sch91], DSA [DSS94,
DSS00], and ECDSA [ECD98] signatures, all meet the generic ElGamal requirements and
respect the parameters and key generation. We give briefly four examples :

The Plain ElGamal signature. Let p and g be respectively a prime number and a gener-
ator of the group G = Z∗

p. In this case, we have q = p−1. g, p, q are public parameters.

200

Part II Chapter 12 - Preserving the Privacy of Signed Documents

Let x ∈u Zp−1 be the secret key and y = gx mod p be the corresponding public key.
The signature σ of a message m is

σ = (σr, σs)

σr = gk mod p, σs =
h(m)− xσr

k
mod p− 1

for some random k ∈u Z∗
p−1. One can verify the signature by checking

yσrσσs
r

?≡ gh(m) (mod p) .

Intuitively, we will makes σr public since it is a random value while we will keep σs

private. So, we will define u := σr and s := σs. Thanks to the zero knowledge proof
we should be able to prove that we know a s such that us = v. So, the second public
information will v := σs

r . With respect to the generic ElGamal, we finally define

• u := gk mod p (= σr),

• v := gh(m)y−u mod p,

• ξ := ∅,
• s := h(m)−xu

k (mod q) (= σs),

• and the ver(y,m, (u, v, ξ)) algorithm consists in checking v
?≡ gh(m)y−u (mod p).

On can verify that us = v by writing

us =
(
gk

)s
= gk·h(m)−xu

k = gh(m) (gx)−u = v .

The Schnorr signature. Let q be a large enough prime number, p = aq + 1 be a prime
number, and g be a generator of G ⊂ Z∗

p of order q. g, p, q are public parameters. Let
x ∈u Zq be the secret key and y = gx mod p be the corresponding public key. The
signature σ of a message m is

σ = (σe, σs)

σe = h(m‖gk mod p), σs = σex+ k mod q

for some random k ∈u Z∗
q. One can verify the signature by checking

σe
?
= h

(
m‖gσsy−σe mod p

)
.

Intuitively, we will keep σs private. So, s := σs. Then, we should fine u and v such
that us = v. we should keep enough information to check the signature and so we let
ξ := σe. With respect to the generic ElGamal, we finally define

201

Sylvain Pasini

• u := g,

• v := gs mod p,

• ξ := h(m‖gk mod p) (= σe),

• s := ξx+ k mod q (= σs),

• and the ver(y,m, (u, v, ξ)) algorithm consists in checking h
(
m‖vy−ξ mod p

) ?
= ξ.

We clearly have us = v.

The DSA signature. Let q be a large enough prime number, p = aq + 1 be a prime
number, and g be a generator of G ⊂ Z∗

p of order q. g, p, q are public parameters. Let
x ∈u Zq be the secret key and y = gx mod p be the corresponding public key. The
signature σ of a message m is

σ = (σr, σs)

σr =
(
gk mod p

)
mod q, σs =

h(m) + xσr

k
mod q

for some random k ∈u Z∗
q. One can verify the signature by checking

σr
?
=

(
g

h(m)
σs

mod qy
σr
σs

mod q mod p

)
mod q .

With respect to the generic ElGamal, we finally define

• u :=
(
gk mod p

)
mod q (= σr),

• v :=
(
gh(m) mod qyu mod p

)
mod q,

• ξ := ∅,
• s := h(m)+xu

k mod q (= σs),

• and the ver(y,m, (u, v, ξ)) algorithm checks v
?
= gh(m) mod qyu (mod p).

On can verify that us = v by writing

us =
(
gk

h(m)+xu

k
mod q mod p

)
mod q =

(
gh(m) mod q(gx)u mod p

)
mod q = v .

The ECDSA signature. It works over an elliptic curve. The difficulty with ECDSA
(see [Vau06]) is to deal with objects of many different types: elliptic curve points,
field elements, integers, and bit-strings. The standard [ECD98] provides extensive
details about how to represent and manipulate them.

There are two possible types of finite fields:

202

Part II Chapter 12 - Preserving the Privacy of Signed Documents

• fields of characteristic two for which the elliptic curve equation over GF(q) is
defined by y2 + xy = x3 + ax2 + b,

• large prime fields for which the elliptic curve equation over GF(q) is defined by
y2 = x3 + ax+mb.

The public parameters consist of the field cardinality q, the selected field type, the
elliptic curve C defined by the parameters a and b, a prime number n > 2160, and an
element G ∈ C of order n. These parameters are subject to many security criteria.
Here we use additive notations. Let d ∈u [1, n − 1] be the secret key and Q = dG be
the corresponding public key. The signature σ of a message m is

σ = (σr, σs)

σr = (kG)x mod n, σs =
h(m) + dσr

k
mod n

for some random k ∈u [0, n − 1] where (P)x denotes the x-coordinate of an elliptic
curve point P ∈ C and e denotes a standard way to convert a field element e into an
integer. If σr = 0 or σs = 0, try with another random k. One can verify the signature

by checking that Q
?∈ C, Q

?
6= O, nQ

?
= O, σr, σs

?∈ [1, n − 1], and

σr
?
=

(
h(m)

σs
G+

σr

σs
Q

)

x

mod n .

Indeed, if everything works well we should have

σr =

(
h(m)

σs
G+

σr

σs
dG

)

x

mod n =

(
h(m) + dσr

σs
G

)

x

mod n = (kG)x mod n

With respect to the generic ElGamal, we finally define

• u := kG,

• v := h(m)G+ uxQ,

• ξ := ∅,
• s := h(m)+dux

k mod n,

• and the ver(Q,m, (u, v, ξ)) algorithm consists in checking v
?
= h(m)G+uxQ mod n

On can verify that u s = v (additive notation) by writing

u s = kG
h(m) + dux

k
mod n = h(m)G + ux(dG) = v .

203

Sylvain Pasini

In order to build a non-transferable signature, instead of revealing the private part of the
signature, we will prove that we know it. Clearly, we will use a zero-knowledge proof as
before. The required proof of knowledge should allows P to prove to V that he knows s
such that us = v. Note that this is the proof of the knowledge of the discrete logarithm.
The identification protocol from Schnorr [Sch90, Sch91] is a Σ-protocol when q is prime
proving exactly that. Consequently, we applied our generic transform from Theorem 12.11
and we obtain the verification protocol of Figure 12.12 which is deniable zero-knowledge
in the CRS model. We thus obtain several schemes: ONTAP-ElGamal, ONTAP-Schnorr,
ONTAP-DSA, ONTAP-ECDSA, and so on.

P V

input: σp, σs common input: crs,Kp,m

(σp = (u, v, ξ), σs = s) pick r ∈u {0, 1}t
pick ℓ ∈u [0, q − 1]

c←−−−−−−−− (c, d) = commit(crs, r)

a = uℓ mod p
a‖σp−−−−−−−−→ check ver(Kp,m, σp)

?
= 1

r = open(crs, c, d)
d←−−−−−−−− σp = (u, v, ξ)

z = ℓ+ r · s mod q
z−−−−−−−−→ check uz ?

= avr (mod p)

Figure 12.12. The iProof Protocol for ONTAP-ElGamal.

Theorem 12.15 (ONTAP-ElGamal).
Assume that the ElGamal-based signature is EF-CMA-secure and that the commit(·) is
a trapdoor commitment scheme in the CRS model (resp. the RO commitment scheme).
The digital signature scheme added to the signature proof iProof of Figure 12.12 forms an
ONTAP scheme in the CRS model (resp. in the RO model). The soundness error is 2−t.

With an extra round we obtain an ONTAP in the standard model as depicted in Fig-
ure 12.6.
Proof.
The proof is similar to the one of Theorem 12.13. It relies on Theorem 12.9 and Theo-
rem 12.11.

12.6 Comparison with Other Works

As the UDVSP of Baek et al. [BSNS05] our ONTAP definition requires no PKI for verifiers.
UDVSP and ONTAP are conceptually equivalent but the security notions differ. The UD-
VSP security from [BSNS05] uses three definitions, restrict to known message attacks and

204

Part II Chapter 12 - Preserving the Privacy of Signed Documents

honest verifiers while we use two definitions, chosen message attacks and malicious verifiers.
In addition to this, our instantiations of ONTAP can be built efficiently on standard signa-
ture schemes and need no change for the signing algorithm. UDVSP does not apply directly
to RSA- and ElGamal-based schemes while our proposed ONTAP implementations do. Our
proposed implementations just require a modular exponentiation for the prover, i.e., the
e-passport, while the proposed UDVSP constructions require the use of bilinear mappings
as well as signature transforms.

Recently, Shahandashti and Safavi-Naini [SSN08] presented a construction for UDVS.
As we saw before, UDVS requires PKI for verifiers and thus is not adapted in our case.
However, they present a way for a signature holder to prove his signature knowledge to a
verifier. They define a signature class C for which signatures can be converted in a public
and a private part. The private part is simulatable and there exists a proof of knowledge
for the private part. The signature holder simply needs to convert its signature, to send the
public part to the verifier, and finally to prove his knowledge of the private part. They use
this definition to designate a signature to a verifier by using a Fiat-Shamir transform on the
interactive proof. Except the transform, we use a similar idea, i.e., a signature in two parts,
one simulatable and the other provable. The authors does not give any security proof (since
it is not their main contribution). They use a classical Σ-protocol and thus their proof of
knowledge is HVZK only. As seen before, HVZK is clearly not enough for the application
we have in mind. Here we strengthen the knowledge proofs, we give formal security proofs
and examples of implementations. Finally the scheme of [SSN08] may loose deniability if a
malicious verifier registers a rogue key.

As the undeniable signature scheme of Gennaro, Krawczyk, and Rabin [GKR00], a pro-
posed instantiation of our solution is based on RSA. However, our protocol is a proof of
knowledge based on Guillou-Quisquater while the confirmation protocol of Gennaro et al.
shows that two elements were raised to the same exponent. This leads to two conceptually
different protocols.

12.7 Application to Electronic Passports

Today, electronic passports, or e-passports, are available in many countries. They are for-
mally called machine-readable travel documents (MRTD). An e-passport embeds an RFID
tag allowing to check the traveler identity through a wireless communication. They also
store private information, biometric data, and a digital signature issued by a national au-
thority. The implementation, the use, the security, and all others things related to passports
are mandated by the International Civil Aviation Organization (ICAO).

As non-electronic passports, e-passports contain a Machine Readable Zone (MRZ) as
depicted in Figure 12.14. The MRZ is aimed to be read by an optical scanner. It consists
of two lines with basic information such as the document type, the document number, the

205

Sylvain Pasini

RFID identification logo

Figure 12.13. How to Distinguish an E-passport? (source: www.passeportsuisse.ch)

document expiry date, the holder name, the holder gender, the holder date of birth, and so
on.

To ensure global interoperability of e-passports, the stored information should follows the
Logical Data Structure (LDS) as written in the standard [MRT04a]. The LDS is split in
nineteenth Data Groups (DG). As examples, the first data group, DG1, contains the digital
version of the MRZ, DG2 contains a facial digital picture in JPEG format optimized for
face recognition, and DG3 may contains the encoded fingerprint(s). Note that only DG1 and
DG2 are mandatory.

12.7.1 Passive versus Active Authentication

Any electronic information (with no cryptographic protection) is subject to copies and/or
alterations. Stored information must be authenticated to prove that they are genuine and
not forged.

Passive authentication. The mandatory solution is to use the passive authentication. In
addition to the LDS data groups, the chip also contains a Document Security Object
(SOD). The SOD includes the hash representations (digests) of the LDS data groups
and a digital signature of this list of digests. It may contain a certificate of the signer’s
public key. The signature is issued by the authority of the country and prove that the
data are authentic and not altered. To verify the signature, one needs to obtain the

206

Part II Chapter 12 - Preserving the Privacy of Signed Documents

RFID chip
Antenna

Machine Readable Zone (MRZ)

Figure 12.14. E-passport Main Components (source: www.passeportsuisse.ch)

certificate of the authority. Sometimes the certificate of the authority is also stored
in the LDS, but if it is not the case it can be obtained from the ICAO public-key
directory. The SOD are mandatory following the ICAO standard.

Optional Active authentication. Active authentication aims to prevent the substitution
or the cloning of the chip. In short, the chip contains a pair of public/private key. The
private key is stored in the chip in a secure part of the memory while the public key is
accessible by the reader in DG15. The reader sends a challenge to the passport. The
passport signs the challenge with its private key and sends back the signature. The
reader now can check the validity of the signature by using the public key stored in
DG15. Remember that data groups are authenticated by the SOD and so the public
key is authenticated. A clone of the chip is impossible since there is no way to recover
the private key from the secure memory and there is no way to modify the whole key
pair since the public key is authenticated by the SOD.

12.7.2 Optional Basic and Extended Access Controls

Since the chip in the passport has wireless access, these data may be captured without the
agreement of the holder. Let Alice be walking with her e-passport in her pocket. With
no access control anyone can obtain the data from her e-passport while it is just stored in

207

Sylvain Pasini

her pocket. The ICAO standard proposes security offers to avoid unauthorized data access.
First of all, e-passports may have a shield (metallic cover) abolishing the radio waves which
avoid the access to the chip unless the e-passport is opened. This solution avoids a little the
identity tracking, but does not really protect the data privacy. Note that it is not longer
used by the countries (actually, only the US passports use it). The ICAO standard propose
two optional protocols avoiding unauthorized access to the chip:

None. There is no access control.

(Optional) Basic Access Control. In short, the basic access control (BAC) avoids unau-
thorized access to the chip and avoids communications eavesdropping.

To avoid unauthorized access, the BAC forces the reader to establish a visual contact
with the MRZ of the e-passport. Indeed, the access to the data stored in the chip is
only possible if the reader knows a secret key which is derived from the MRZ.

To avoid communications eavesdropping, the BAC then use a key derivation mecha-
nism in order to establish session keys for secure messaging between the chip and the
reader.

It is not a real access control since anyone can implement an e-passport reader and
obtains data from any passport without being authorized by public authorities. BAC
is well known to provide a very small protection against unauthorized access. It is
by far insufficient since the new generation of e-passports will contain more private
information such as fingerprint, address, etc.

While access control is optional, today e-passports from almost all countries implement
the basic access control (BAC).

(Optional) Extended Access Control. The European Union is now promoting the ex-
tended access control (EAC) which is based on more elaborate cryptographic protocols
(ECDH key agreement with key authentication) and terminal authentication based on
a specific public key infrastructure (PKI). Each border patrol would possess a certifi-
cate and the e-passport may verify it before giving sensitive data. This PKI is also
known to suffer from weaknesses. First, the revocation procedure is unreliable: an
e-passport is completely disconnected, so he has no reliable clock and certificate revo-
cations become very difficult in this setting. Secondly, border patrol certificates can
only be used by authorized countries. The visiting country presents a certificate to the
e-passport which is able to verify its validity only if the certificate was signed by the
national authority (from the home country). However, for foreign countries who has
no agreement with the home country, the e-passport should be able to prove the iden-
tity of its owner. So, these countries are limited to the use of BAC. This means that
the e-passport has no mean to check certificates from unauthorized readers. So, the
e-passport will offer a better security in the countries with agreements than countries
without it. This seems pretty weird.

208

Part II Chapter 12 - Preserving the Privacy of Signed Documents

In addition to this, EAC is only meant to protect non-mandatory data groups since
mandatory ones should still be accessible to countries with no agreement to read extra
information. This means that DG1, DG2 are not protected and worse that the SOD
is not protected by EAC so will still leak evidence that a given protected data group
is correct. Clearly, an adversary can still distinguish a correct EAC-protected data
group from an incorrect one without being authorized to read it.

12.7.3 E-Passport Passive Authentication Issue

As pointed out by Monnerat, Vaudenay, and Vuagnoux [MVV07], the passive authentication
is a big loss for privacy.

Indeed, the actual implementation following the ICAO standard allows someone having
access to a passport to get the private information and a proof of it. The main problem is
that the proof can be transferred. We note that there is two manners to transfer a proof:

• The first manner is to run a relay attack, also known as the Mafia fraud attack. It is
some kind of (online) man-in-the-middle attack in which an adversary uses a distant
passport to prove its identity to a verifier.

• The second manner is simply to store all information (accessible offline) and the sig-
nature.

We focus on the second threat. Note that a possible countermeasure against the first
threat may be to use some distance bounding solution (see Section 2.5.2).

12.7.4 Deniable Zero-Knowledge in Signature Verification

First of all, note that to execute the optional active authentication, the chip has to carry
out some RSA computation(s). Therefore, we can assume that chips are able to run one or
two RSA computations. Following the ICAO standard, we also note that e-passports should
use RSA, DSA, or ECDSA signatures.

One solution for e-passports is to avoid the signature of the SOD to be revealed. The
e-passport should prove that it knows the signature (a proof of knowledge) but it should
not reveal it (zero-knowledge proof). Thus, we propose to have the signature part of the
SOD hidden and passive authentication replaced by an Offline Non-Transferable Authenti-
cation Protocol (ONTAP) which is a deniable zero-knowledge authentication protocol, see
Section 12.3. We gave the necessary material to implement an ONTAP protocol for the
signature standards used in e-passports, e.g., RSA, DSA, and ECDSA, in Sections 12.5.1
and 12.5.2.

209

Sylvain Pasini

210

Chapter

THIRTEEN

Building Secure Schemes based on Weak

Hash Functions

A textbook signature scheme usually does a poor job because it is restricted to input mes-
sages of fixed length and is often weakly secure as described in Section 11.2. In order to
sign messages of arbitrary length, hash functions [Riv91, Riv92, SHA93, SHA95] and the
so-called hash-and-sign paradigm appeared. Clearly, collision attacks on the hash functions
lead to forgeries. Therefore, hash functions must be collision resistant. The problem is that
their collision resistance is not as high as expected as evidenced by the recent successful
attacks by Wang et al. [WY05, WYY05a, WYY05b].

Here, we wonder how to recycle signature schemes that are currently implemented and
based on (now) weak hash functions. To do so, we consider generic transforms using pre-
processing based on [BR97, HK06a, Mir06].

We first recall the hash-and-sign paradigm. The first variant shows how a random oracle
brings randomness (Section 13.1.1), the second one shows how a collision-resistant hash
function extends the input domain (Section 13.1.2), and the last one presents the original
hash-and-sign paradigm with a random oracle (Section 13.1.3).

The hash-and-sign paradigm is proven in the random oracle model while in practice hash
functions are used instead. As said before, hash functions deviate more and more from this
idealization. In particular, collisions may be reported.

211

Sylvain Pasini

A natural solution to avoid the collision-resistance assumption on the hash function is
to add randomness in hashing. As detailed in Section 13.1.4, Bellare and Rogaway [BR97]
proposed to sign (K,HK(m)) with a random salt K where H is a Target Collision Resistant
(TCR) hash function, also known as Universal One-Way Hash Function (UOWHF).

More recently, Halevi and Krawczyk [HK06a] proposed the concept of enhanced TCR
(eTCR) hash function, some eTCR construction techniques, and the RMX construction
based on current hash functions. This latter scheme only adds a randomized pre-processing
on the input message and thus standard implementations can be used as-is. As detailed in
Section 13.1.5, they suggest to use eTCR functions as pre-processing for signature schemes
and, as a consequence, the salt K does not need to be signed.

In a first time, we will look for a security model which fits in a better way the real hash
functions. Indeed, we develop in Section 13.2 the Preimage-Tractable Random Oracle Model
(PT-ROM) which was introduced by Liskov [Lis07].

In Section 13.3, we prove in our PT-ROM that the construction with an eTCR pre-
processing is strongly secure based on any textbook signature scheme which is weakly secure.

The disadvantage of the methods using a random seed κ is that κ must be appended
to the signature. To avoid the increase in signature length, Mironov [Mir06] proposed for
DSA [DSS94, DSS00], RSA-PSS [BR96], and the Cramer-Shoup [CS00] schemes to re-use
the randomness from the signature scheme instead of adding a new one. In Section 13.4,
we generalize this construction and propose a generic transform that applies to special
signature schemes. Indeed, we define special signature schemes for which we can split the
signature algorithm in two parts: first, there is a randomized algorithm independent from
the input message, then, there is a deterministic algorithm which outputs the signature. We
call these schemes Signatures with Randomized Precomputation (SRP). This assumption
makes the pre-processing transform less generic because the signature must generate some
random coins which must be available before the message is processed and extractable from
the signature.

We published the PT-ROM, the strengthening signature construction, as well as the
generic entropy recycling technique in [PV07].

13.1 Hash-and-Sign variants Today

Building a signature scheme for messages of arbitrary length based on a scheme restricted
to fixed message length implies that a function H taking in input messages from an infinite
domain M and outputs an elements of a finite space MH exists. Such a signature schemes
follows the hash-and-sign paradigm.

212

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

13.1.1 Adding Unpredictability

We first consider that we have access to a random oracle R. Our construction S′ is a
strongly secure FML-DS based on a weakly secure FML-DS S. The construction is depicted
in Figure 13.1 and formally works as follows:

S′.sign(Ks,m) = S.sign (Ks,R(m)) . (13.1)

S.sign σm R

S’.sign

Figure 13.1. Hash-and-Sign Bringing Unpredictability (with a Random Oracle R).

Theorem 13.1 (Hash-and-Sign Paradigm, Unpredictability).
Consider R is a random oracle bounded by q queries with n-bit input strings and k-bit
output strings. In addition, consider S is any (T, ℓ, ε)-UF-KMA resistant FML-DS scheme
with s-bit output strings.

The signature construction S′ defined by Equation (13.1) is (T − µ, ℓ, q · ε)-EF-CMA
resistant where µ = O (q(k + n)).

Note that we could directly use this (folklore) construction to reach AML-DS, but this
would prevent us from identifying the role of collision resistant hash functions. Indeed, ran-
dom oracles usually play two roles: bringing collision resistance and unpredictability [Can97].
Here, we would like to separate the two roles. In Theorem 13.1 when R has a fixed input
length (hence for FML-DS) we identify where unpredictability is used. The next Theo-
rem 13.2 uses collision resistance. Finally, Theorem 13.3 will combine both.

Another motivation would be to replace collision resistant hash functions in existing sig-
nature schemes by keeping the same security as detailed in subsequent sections.

Proof.
Clearly, the steps of the construction S′ are in the following order:

mi ∈ {0, 1}n R−−−−−−→ ri ∈ {0, 1}k
sign−−−−−−→ σi ∈ {0, 1}s .

Consider any (T − µ)-time adversary A playing the EF game in the CMA model against
our constructed scheme S′. A can access to oracles for R and for S′.sign. Using an algorithm
B of complexity at most µ, we can transform A in an adversary playing the UF-KMA game
against S as depicted in Figure 13.2 where C plays the role of the challenger in the UF-KMA
game (with respect to S).

213

Sylvain Pasini

Without loss of generality, we assume that before querying the signing oracle with a
message m, A always query R with m. We also assume that queries to R are pairwise
different and the forged message m̂ is queried to R at some point.

A B C

Kp←−−−−−− Kp←−−−−−− (Kp,Ks)← setup(1λ)
br←−−−−−− pick r̂ ∈u {0, 1}k

∀i ∈ [1, ℓ] :
pick r̄i ∈u {0, 1}k

r̄i||σ̄i←−−−−−− σ̄i ← S.sign (Ks, r̄i)
∀j ∈ [1, ℓ] : select mj

mj−−−−−−→
rj←−−−−−−

simR

∀k ∈ [1, ℓ] : select
m′

k

m′
k−−−−−−→

σk←−−−−−−
simSign

select m̂, σ̂
bm||bσ−−−−−−→ bσ−−−−−−→ b← verify(Kp, r̂, σ̂)

A wins when b = 1 and m̂ /∈ {m′
1, . . . m

′
ℓ}.

Figure 13.2. Reduction to the UF-KMA Game Against S.

B has to simulate for A the R and S.sign oracles that we refer by simR and simSign
respectively. The simulations work as follows:

simR algorithm. At the beginning of the game, B picks a random t ∈u [1, q]. When A
submits an R-query with input mj, it answers with the next r̄i in the sequence, i.e.,
rj = r̄i, except for the tth query for which it answers with r̂, i.e., rt = r̂.

simSign algorithm. WhenA submits a sign-query, the input messagem′
k was queried before

to simR. So, ∀j 6= t, the R(mj) is equal to an r̄i and for j = t, it is equal to r̂. Except
in the r̂ case, B answers by the corresponding σ̄i, otherwise it fails.

If A succeeds, he will send a (forged) valid pair (m̂, σ̂) to B. Note that m̂ was queried to R
and thus R(m̂) = rt = r̂ with probability 1/q. Since a query to R with input m̂ will output
r̂ with probability 1/q, S.sign(Ks, r̂) will be equal to S′.sign(Ks, m̂) with probability 1/q.
Thus, B simply has to forward σ̂ to C and wins with probability 1/q.

Clearly, B perfectly simulates a challenger for the adversary A which plays the EF-CMA
game. B plays the UF-KMA game with C and wins its game when R(m̂) = r̂ which appears
when B guessed the right t at the beginning, i.e., with probability 1/q.

214

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

13.1.2 Domain Extension

Using a full collision resistant hash function (CRHF) H, the hash-and-sign paradigm allows
to build a secure signature scheme for messages of arbitrary length. As we noted before,
collision resistance is actually no longer considered as a reasonable assumption. The con-
struction S′ is a strongly secure FML-DS based on a strongly secure AML-DS S. The
construction is depicted in Figure 13.3 and formally works as follows:

S′.sign(Ks,m) = S.sign (Ks,H(m)) . (13.2)

S.sign σm
� S’.sign

Figure 13.3. Hash-and-Sign Extending the Domain (with a CRHF H).

Here is the corresponding security result from [Rog06].

Theorem 13.2 (Hash-and-Sign Paradigm, Domain Extension).
Consider H : {0, 1}∗ → {0, 1}k be a collision resistant hash function and S be a (T, ℓ, ε)-
EF-CMA resistant FML-DS scheme with at least k-bit input messages.

The AML-DS construction S′ defined by Equation (13.2) is (T−µ, ℓ, ε+ℓ·2−k)-EF-CMA
resistant where µ = O(ℓ · k + L) and L is a bound on the total length of messages to be
signed.

In short, if H is a collision resistant hash function and S is a strongly-secure FML-DS,
then S′ is a strongly-secure AML-DS.

Proof.
Consider an algorithm B and an adversary A against our constructed scheme S′. As in the
previous proof, we use both of then to attack the scheme S. The reduction is depicted in
Figure 13.4. Note that an attack against the scheme S′ exists if and only if m̂ /∈ {m1, . . . ,mℓ}.
Equivalently for the scheme S, the attack exists if and only if ĥ /∈ {h1, . . . , hℓ}.

Suppose A wins his game with probability ε (against S′). A wins if m̂ /∈ {m1, . . . ,mℓ} but
it is perhaps not the case for the ĥ. Indeed collisions can occur between H(ĥ) and the set
{H(h1), . . . H(hℓ)} with probability p = 1− (1− 2−k)ℓ ≤ ℓ · 2−k. In such a case, the attack
against S fails, i.e., with probability at most ℓ · 2−k.

215

Sylvain Pasini

A B C

Kp←−−−−−−−− Kp←−−−−−−−− (Kp,Ks)← setup(1λ)

select mi
mi−−−−−−−−→ hi ← H(mi)

hi−−−−−−−−→
σ′

i←−−−−−−−− σ′
i←−−−−−−−− σ′i ← S.sign(Ks, hi)

select m̂, σ̂
bm||bσ−−−−−−−−→ ĥ← H(m̂)

bh,bσ−−−−−−−−→ b← verify(Kp, ĥ, σ̂)

A wins when b = 1 and m̂ /∈ {m1, . . . ,mℓ}.
Figure 13.4. Reduction to the EF-CMA Game Against S.

13.1.3 Both at the Same Time

Combining Theorem 13.1 (adding unpredictability by using a random oracle) and Theo-
rem 13.2 (extending the message space using a hash function), we obtain a strongly secure
AML-DS that is the so called hash-and-sign paradigm. The construction is depicted in
Figure 13.5.

S.sign σm R

S’.sign

Figure 13.5. The Hash-and-Sign Paradigm (with a Random Oracle R).

Here is the corresponding security result from [Rog06].

Theorem 13.3 (Hash-and-Sign Paradigm).
Let R : {0, 1}∗ → {0, 1}k be a random oracle and S be a (T, ℓ, ε)-UF-KMA resistant FML-
DS scheme with at least k-bit input messages.

The AML-DS construction S′ defined by

S′.sign(Ks,m) = S.sign (Ks,R(m))

is (T − µ, ℓ, ε + ℓ · 2−k)-EF-CMA resistant where µ = O(ℓ · k + L) and L is a bound on
the total length of messages to be signed.

The proof of this folklore result is rather straightforward. Indeed, H brings collision
resistance in domain extension as well as unpredictability.

216

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

In short, if R is a random oracle and S is a weakly-secure FML-DS, then S′ is a strongly-
secure AML-DS.

13.1.4 Randomized Hash-and-Sign Paradigm

The idea of using a TCR function comes from Bellare and Rogaway [BR97]. It was also
reused recently by Mironov [Mir06]. As depicted in Figure 13.6, the constructed signature
consists of the pair randomness-signature as follows:

S′.sign(Ks,m) = (κ, S.sign(Ks, κ‖Hκ(m)))

where κ is some random coins and Hκ(·) is a TCR hash function.

S.sign σ

m

S’.sign

Hκ

κrandom

h

κ

Figure 13.6. The Randomized Hash-and-Sign Paradigm (with a TCR Function H).

The following result is a straightforward generalization of Mironov [Mir06].

Theorem 13.4 (Randomized Hash-and-Sign Paradigm with a TCR Function).
Consider an FML-DS S with domain {0, 1}r and a function G : {0, 1}∗ 7→ {0, 1}r. We
assume that G(X) is indistinguishable from Y ∈u {0, 1}r when X ∈u {0, 1}2r. Let H :
{0, 1}k × {0, 1}∗ 7→ {0, 1}n be a TCR hash function and R : {0, 1}k+n 7→ {0, 1}r be a
random oracle. We construct two AML-DS S∗ and S′ by

S∗.sign(Ks,m) = S.sign (Ks, G(m))

S′.sign(Ks,m) = (κ ‖ S.sign (Ks,R (κ‖Hκ(m)))) with κ ∈u {0, 1}k

Assuming that S∗ is EF-CMA-secure, then S′ is also EF-CMA-secure.

This means that if there exists a domain extender G that makes S∗ strongly-secure, then S′

is strongly-secure.

Proof.
Consider H : {0, 1}k × {0, 1}∗ 7→ {0, 1}n is a (T + µH , εH)-TCR hash function for µH

to be defined later, R : {0, 1}k+n 7→ {0, 1}r is a random oracle bounded to q queries,

217

Sylvain Pasini

and S an FML-DS scheme with r-bit input messages. We assume that the construction
S∗ is (T + µS, ℓ, εS)-EF-CMA secure for µS to be defined later. We assume that G is
(T + µG, q + ℓ + 1, εd)-PRG when restricted to (2r)-bit inputs. We will prove that the
construction S′ is (T, ℓ, εS +ℓεH +εc +εd)-EF-CMA secure where εc represents a probability
of collision on the outputs of the random oracle.

We consider an adversary A playing the EF-CMA game against S′. We assume without
loss of generality that A queries R with κ‖Hbκ(m̂) before releasing the final forgery (m̂, κ̂, σ̂)
(so we have up to q+1 queries to R). By using an algorithm B, we prove that we can reduce
A to an adversary either against the signature construction S∗ or either against the TCR
hash function H.

A B C Di
Kp←−−− Kp←−−− (Kp,Ks)← S.setup
xi−−−→
gi←−−− simR

mj−−−→

κj‖σj←−−−
simSign

mj−−−−−−−−−−−−−−−−−−−−−−−−−−−→
κj←−−−−−−−−−−−−−−−−−−−−−−−−−−−

m̄j−−−→
σj←−−− σj ← S.sign(Ks, G(m̄j))

κj ∈u {0, 1}k

bm‖bκ‖bσ−−−→ ĥ← Hbκ(m̂)
x̂← κ̂‖ĥ

find m̄:
G(m̄) = simR(x̂)

bm−−−−−−−−−−−−−−−−−−−−−−−−−−−→

m̄‖bσ−−−→ bS ← S.verify(Kp, G(m̄), σ̂)

check ∀j :
Hκj

(m̂) 6= Hκj
(mj)

Figure 13.7. Reduction to EF-CMA or TCR Games (from EF-CMA).

The reduction is depicted in Figure 13.7 where C plays the role of the challenger in the
EF-CMA game of Figure 11.2 for S∗ and each Di plays the role of the the challenger in the
TCR game of Figure 3.3. Clearly, B has to simulate the random oracle R and the signing
oracle that we refer to simR and simSign respectively. The simulations work as follows:

simR: B manages a table T initially empty. For each R-query with input x:

• if simR(x) is not defined in T, B picks a random m̄ uniformly in {0, 1}2r and
answers g ← G(m̄). Hence, a new entry (x, g, m̄) is inserted in T, meaning
simR(x) = g = G(m̄). Note that the third entry m̄ will be used by simSign only.

• otherwise, i.e., if simR(x) is defined in T, B answers g = simR(x) as defined in T.

simSign: For each sign-query with input m:

1. B computes x← κ‖Hκ(m) where κ is returned by Di on query m,

2. B queries simR(x). Let m̄ be such that simR(x) = G(m̄) from T,

218

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

3. B queries C with m̄ to obtain its signature σ,

4. finally, B returns κ‖σ to A.

B is allowed to ℓ queries to the S.sign oracle, so A is also allowed to ℓ queries to simSign.
Note that the simSign simulation is perfect but the simR simulation is not. At the end,
if A succeeds, he returns a forged pair (m̂, κ̂, σ̂) to B. We use the proof methodology of
Shoup [Sho04]:

• Let game0 be the normal EF-CMA game against S′ (with R and S.sign oracles).

• Let E1 be the event that there were no collision on the output of R. Let game1 be
game0 in which the winning condition is modified by mandating E1 to occur.

Clearly, when E1 does not occur, there is a collision on the R outputs. Since there
is at most q + ℓ + 1 elements in the simR table, this probability is bounded by εc ≤
(q+ℓ+1)2

2 2−r. So, δ1,0 = Pr[A wins game0]− Pr[A wins game1] ≤ εc.
• Let game2 be game1 where the R oracle was replaced by the simR simulator.

Let A′ simulate A and simR in which picking a random m̄, computing g ← G(m̄),
and inserting (x, g, m̄) in the table is replaced by getting a random g∗ from a source
Σ and storing (x, g∗) in the table. We consider the two following sources: Σ0 picks
g∗ with uniform distribution and Σ1 picks m̄ and output g∗ ← G(m̄). Note that
using Σ0 perfectly simulates game1 while using Σ1 perfectly simulates game2. At the
end, A′ checks whether the EF-CMA game succeeded. Clearly, this is a distinguisher
of some complexity T + µG between Σ0 and Σ1 by using q + ℓ + 1 samples. So,
δ2,1 = |Pr[A wins game1]− Pr[A wins game2]| ≤ εd.
• Let game3 be the simulated EF-CMA game of Figure 13.7. Since the simulation simSign

of the signing oracle is perfect, we have Pr[A wins game3] = Pr[A wins game2] and
thus δ3,2 = 0.

• Let E4 be the event that the final m̄ was not queried to C. Let game4 be the game3 in
which E4 occurred. In that case, A can be perfectly reduced to an EF-CMA adversary
of complexity T + µs against C. So, Pr[A wins game4] ≤ εS .

Clearly, if E4 did not occur, m̄ was previously queried to C. Let m̄ = m̄j, i.e., m̄ was
queried by B to C at the jth sign-query. Thus, B queried simR with an input xj and
obtained (xj , G(m̄j), m̄j). Since there were no collision on simR, m̄ = m̄j implies that

x̂ = xj thus κ̂ = κj and ĥ = hj. We have Hbκ(m̂) = Hbκ(mj). m̂ is different from all
mi since A won his attack against S′. Hence, A can be perfectly reduced to a TCR
adversary against Dj and δ4,3 = Pr[A wins game3]− Pr[A wins game4] ≤ ℓεH .

219

Sylvain Pasini

Finally,

Pr[A wins game0] ≤ Pr[A wins game4] + δ4,3 + δ3,2 + δ2,1 + δ1,0

≤ εS + ℓεH + 0 + εd + εc

We conclude by considering the above reductions that µH and µS are within the order of
magnitude of the simulation cost which is polynomial.

There still remains some problems related to this last construction:

1. we do not have a full reduction to the weak security of S;

2. the signature enlarges;

3. κ must be signed;

4. we still need a random oracle R (implicitly meaning collision-resistant hashing) so the
role of R is to concentrate on unpredictability and nevertheless, R is now restricted to
{0, 1}k+m.

13.1.5 Improved Randomized Hash-and-Sign Paradigm

Halevi and Krawczyk [HK06a] also use a randomized hashing but avoid signing the κ salt.
Indeed, they use an eTCR hash function as depicted in Figure 13.8. In [HK06a], they

S.sign σ

m

S’.sign

Hκ

κrandom

h

Figure 13.8. The Randomized Hash-and-Sign Paradigm (with an eTCR Function H).

introduced the concept of eTCR hashing and proposed a construction technique for eTCR
functions. The technique is based on weak hashing. As application, they suggested to use
an eTCR function as pre-processing for signature schemes. The signature consists of the
pair (κ, σ) where σ is S.sign(Ks,Hκ(m)). One problem is that they do no provide any proof
of security for the signature. Indeed, they only focus on the problem for constructing an
eTCR hash function based on weak hashing.

220

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

13.1.6 Analysis of the Above Existing Solutions

Figure 13.9 summarizes the results of the above theorems.

Function Domain
extension

Security proof ‖σ′‖2 = ‖σ‖2 Avoid
signing κ

ROM

RO* / ,(weak to strong) , n/a /

CRHF , ,(strong to strong) , n/a ,

RO , ,(weak to strong) , n/a /

TCR , ≈ (no reduction to S) / / /

eTCR , / / , n/a

Figure 13.9. Summary of the Hash-and-Sign Paradigm Variants.

In a nutshell,

• using a CRHF, signatures do not enlarge and no RO is needed, however there is no
security benefit and it is difficult to find strongly-secure plain signatures,

• using a random oracle, there is a security benefit, however there is the need of a random
oracle while in practice hash functions deviate more and more from this idealization,

• using a TCR function, there is no reduction to the security of the signature S, there
is still a need for a random oracle, and in addition the signature enlarges,

• finally, using an eTCR hash function, there is no formal security proof and the signa-
ture still enlarges.

In the rest of this chapter, we will propose a solution solving many problems and we
concentrate on the four following goals:

1. The actual implementations are (almost all) proven in the random oracle model. In
practice, the random oracle is just replaced by a hash function. While hash functions
deviate more and more from the ideal random oracle, the security of the signature
implementations which use the hash-and-sign paradigm becomes less and less secure.
Our first goal is to find a provably secure solution to improve the security of the
signature schemes which use the hash-and-sign paradigm.

2. We note that replacing the actual implementations is quite infeasible in a short time.
So, we want to find a pre-processing able to reuse the actual implementations.

3. Before looking for a solution, first, we should find a “better” model which will fit the
behavior of the (weak) hash functions. As said before, we emphasize that the random
oracle model is too strong.

221

Sylvain Pasini

4. Finally, if it is possible we would like to avoid that the signature enlarges.

So, we start with Section 13.2 by defining a weaker model which seems better adapted to
hash functions than the random oracle model. Then, in Section 13.3, we give a provably
secure pre-processing solving goals 1, 2, and 3. Finally, in Section 13.4, we show how to
avoid the increase in signature length in order to solve our last goal.

13.2 Modeling (Weak) Hash Functions

One crucial task is to find a model which fits to the current security of hash functions. Today
hash functions are often modeled by random oracles (see Section 3.3) while they differ more
and more from this idealization. A solution is to use the Liskov [Lis07] idea. It consists of
a random oracle that is provided together with another oracle that “breaks” one (or many)
hash function property(ies), e.g., a first preimage oracle. We apply the preimage-tractable
random oracle model (PT-ROM) to model weak hashing in digital signatures.

13.2.1 Weak Random Oracle Hashing

Preimage-Tractable Random Oracles were introduced by Liskov [Lis07]. It is used to idealize
some weak hash functions for which preimages are computable, i.e., the one-wayness is not
guaranteed. It consists of two oracles:

• the first oracle WR can be used to compute images as a random oracle, i.e., r = WR(m),

• the second oracle preimgWR can be used to find a preimage of a hashed value. When
preimgWR is queried with input r, it picks uniformly at random an element within the
set of all its preimages, i.e., it outputs m ∈u {WR−1(r)}.

The simulation of WR is done as for a (standard) random oracle, i.e., managing a table T.
To simulate preimgWR, upon a new query r we first compute the probability q to answer an
m that is not new, i.e.,

q = Pr
[
(WR−1(r), r) ∈ T|!(m′,r′)∈T WR(m′) = r′

]
.

Then, we flip a biased coin b with Pr[b = 0] = q. If b = 0, then we pick uniformly one pair
(m, r) in T, otherwise we pick uniformly one m such that (m, r) /∈ T and insert (m, r) in T.
Finally, we answer by m. Note that this oracle can be used to find collisions as well.

From a theoretical viewpoint, the preimage-tractable random oracle model (PT-ROM) is
as powerful as the random oracle model (ROM) since preimgWR(0‖α) ⊕ preimgWR(1‖α) is
indifferentiable from a random oracle even when (WR, preimgWR) is a preimage-tractable

222

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

random oracle. Our motivation is to model weak hash functions which are in place without
changing the algorithm implementations.

13.3 Strong Signature Schemes with Weak Hashing

Today, most of the implementations use the hash-and-sign paradigm as depicted in Fig-
ure 13.10. The problem is that the hashing became weak. As said before, we only want to
add a pre-processing and we will consider this type of construction as one soldered block in
the future. In Figure 13.10, the soldered block is modeled by a double line.

S.sign σm WR

S*.sign

w

Figure 13.10. The (Weak) Hash-and-Sign Implementations S∗ (double boxed).

More formally, we consider a deterministic (weak) hash-and-sign signature S∗ defined by

S∗.sign(Ks,m) = S.sign(Ks,WR(m)) ,

where WR : {0, 1}n → {0, 1}r is a (weak) hash function and S is an weakly-secure FML-DS
on domain {0, 1}r .

We put S∗ together with the Halevi and Krawczyk [HK06a] message processing. Namely,
given a weakly-secure FML-DS S we construct a strongly-secure AML-DS S′ as depicted in
Figure 13.11.

σm Hκ

κrandom

S’.sign

S.signWR

S*.sign

h
�

Figure 13.11. The Secure Construction based on S∗.

Formally we have:

S′.sign(Ks,m) = (κ,S∗.sign(Ks,Hκ(m))) ,

223

Sylvain Pasini

where H : {0, 1}k × {0, 1}∗ to {0, 1}n is an eTCR hash function family. More precisely, the
sign and verify algorithms work as follows:

σ′ ← S′.sign(Ks,m):

• pick κ ∈u {0, 1}k

• h← Hκ(m)

• w ←WR(h)

• σ ← S.sign(Ks, w)

• σ′ ← (κ‖σ)

b← S′.verify(Kp,m, σ
′): (σ′ = κ‖σ)

• h← Hκ(m)

• w ←WR(h)

• b← S.verify(Kp, w, σ)

Clearly, our construction can be seen as a regular AML-DS based on a (weak) hash-and-
sign with an extra randomized pre-processing Hκ(·).

Theorem 13.5 (Randomized Hash-and-Sign Paradigm with an eTCR Function).
Consider H is an OW-eTCR hash function family, and WR is a preimage-tractable random
oracle. If S is an UF-KMA-secure FML-DS, then S′ in the above AML-DS construction
is EF-CMA-secure.

Clearly, we can build strong signature schemes for arbitrary messages based on any weak
signature scheme restricted to fixed-length input messages without collision-resistance and
without a full random oracle. The remaining drawback is that the signature enlarges.

Note that the OW assumption on H is necessary since WR is assumed to be preimage-
tractable (otherwise, existential forgeries on S would translate in existential forgeries on S′).
and eTCR hash functions may be not OW. Indeed, if H is eTCR, then H ′ defined by

H ′
κ(m) =

{
0‖m if κ = 0 . . . 0 and |m| = n− 1,
1‖Hκ(m) otherwise.

is eTCR as well but not OW. However, when there exists a set of messages M such that H
is a PRG when restricted to {0, 1}k×|M|, then eTCR implies OW-eTCR.

Proof.
Let us assume that S is (T+µ, ℓ, εS)-UF-KMA-secure, H is (T+µ, εH)-eTCR and (T+µ, εw)-
OW, and WR is a random oracle limited to q < ℓ queries where µ is some polynomially
bounded complexity (namely, the overhead of some simulations). We will show that S′ is
(T, ℓ− q, εf + qp · εw +(ℓ− q) · εH + q · εS)-EF-CMA-secure where εf represents a probability
of failure during the reduction.

We start by considering an EF-CMA adversary A against our constructed scheme S′. We
assume that A is bounded by a complexity T . By using an algorithm B, we transform A
either into an UF-KMA adversary against S or either into an eTCR adversary against H

224

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

A B C Di′′

Kp←−−−−−− Kp←−−−− (Kp,Ks)← S.setup(1λ)
w∗

←−−−− w∗ ∈u {0, 1}r
∀i ∈ [1, ℓ] : w̄i ∈u {0, 1}r

w̄i‖σ̄i←−−−− σ̄i ← S.sign(Ks, w̄i)hi−−−−−−→
wi←−−−−−− simWR
wi′−−−−−−→
hi′←−−−−−− preimgWR
mi′′−−−−−−→

κi′′‖σi′′←−−−−−− simSign

mi′′−−−−−−−−−−−−−−−−−−−−−−→
κi′′←−−−−−−−−−−−−−−−−−−−−−−

κi′′ ∈u {0, 1}k

bm‖bκ‖bσ−−−−−−→ ĥ← Hbκ(m̂)
bm‖bκ−−−−−−−−−−−−−−−−−−−−−−→ check Hbκ(m̂)

?
= Hκi′′

(mi′′)

ŵ ← simWR(ĥ)
bσ−−−−→ bS ← S.verify(Kp, w

∗, σ̂)

Figure 13.12. Reduction to the UF-KMA or eTCR Games (from EF-CMA).

as depicted in Figure 13.12. Here, C plays the role of the challenger in the UF-KMA game
of Figure 11.1 while each Di′′ plays the role of the i′′th challenger in the eTCR game of
Figure 3.4.

Clearly, algorithm B has to simulates for A the signing oracle and the two oracles that
model the preimage-tractable hash function that we refer by simSign, simWR, and preimgWR
respectively. To simulate WR and preimgWR, we use another existing preimage-tractable
random oracle WR0 and preimgWR0 and we construct a random permutation ϕ such that
WR = ϕ ◦WR0. We consider a growing pool of values of h. The pool is initially empty. A
new h is put in the pool if it is queried to simWR or returned by preimgWR. Without loss
of generality, we assume that A makes no trivial queries to simWR. Namely, he does not
query simWR with an h already in the pool. Similarly, we assume that if ĥ = Hbκ(m̂) is not
in the pool, A queries simWR(ĥ) before releasing m̂‖κ̂‖σ̂ to make sure that ĥ is in the pool.
(So we may have q + 1 queries to simWR.) The simulations work as follows:

simWR: At the beginning of the game, B picks a random t ∈u {1..q}. When A submits a
WR-query with input h:

• if ϕ(WR0(h)) is undefined, it answers the next w = w̄i in the sequence, except that
for the tth query it answers w = w∗. Hence, there is a new entry ϕ(WR0(h)) = w
in the ϕ table.

• If ϕ(WR0(h)) is already defined, B aborts.

preimgWR: When A submits a preimgWR query with input w, if x = ϕ−1(w) is not defined,
it picks a random x on which ϕ(x) is not defined and define ϕ(x) = w. Then, it queries
h← preimgWR0(x) and answers h.

225

Sylvain Pasini

simSign: When A submits a sign-query with input m, B queries a new Di′′ with input m,
gets κ, and computes h = Hκ(m). If h is in the pool, B abort. Otherwise, B runs
w ← simWR(h) without counting this query (that is, use the next w̄i in the sequence
and not w∗). Thus, simWR(h) is equal to one of the w̄i and B uses the corresponding
signature σ̄i to answer κ‖σ̄i.

Note that B has ℓ signed samples from C, thus A is limited to ℓ queries to simWR and
simSign. So, q + qs ≤ ℓ. At the end, if A succeeds his EF-CMA game, he will send a tuple
(m̂, κ̂, σ̂) to B. We use the proof methodology of Shoup [Sho04]:

• Let game0 be the EF-CMA game of Figure 11.2 against S′.

• Let game1 be the simulated EF-CMA game against S′ depicted in Figure 13.12.

Clearly, the simulations fails when a ϕ(WR0(h)) is already defined while querying
simWR with h or when h = Hκ(m) was already in the pool while querying simSign.
Let εf the bound on this failure probability. By using the difference lemma [Sho04]
we obtain δ1,0 = Pr[A wins game0]− Pr[A wins game1] ≤ εf .

Note that εf ≤ Pr[B fails on a simWR query] + Pr[B fails on a simSign query]. We
consider A is bounded by q, qp and qs queries to simWR, preimgWR, and simSign
respectively, and a space of 2r elements.
First, we compute the probability that B fails on a simWR query, i.e., there were a
collision of WR0(h) for one h queried to simWR with one WR0(h

′) for h′ in the pool.
By considering the queries from A and from simSign, there are at most q + qs + 1
queries to simWR and at most q + qs + qp + 1 elements still defined in the pool. Since
they are uniformly distributed, the probability that two elements collide is 2−r. So,
Pr[B fails on a simWR query] ≤ (q + qs + 1)(q + qs + qp + 1) · 2−r.
Now, we compute the probability that B fails on a simSign query, i.e., h was already in
the pool. There are at most qs queries to simSign and at most q+qs +qp+1 elements h
in the pool. For each query-h pair, we have the following scenario: A queries simSign
with m, B queries D with m, gets κ, computes Hκ(m), and looks if it is h. Clearly, this
scenario can be described as game (a) of Figure 13.13. Let p be the maximal success
probability among all random coins of the adversary A in the game (a).

Now, consider game (b) depicted in Figure 13.13. Clearly, this game is harder than
the eTCR game since A′ has no control on the second message returned to C, i.e., it
is fixed to m0. We know that εH is a bound on the success probability of A′ in the
eTCR game. Thus, we can deduce that p ≤

√
εH + 2−k from:

εH ≥ Pr[Hκ(m0) = Hκ′(m0) and κ′ 6= κ]

≥ Pr[Hκ(m0) = Hκ′(m0)]− Pr[κ′ = κ]

= p2 − 2−k.

226

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

A D

select h,m
h‖m−−−→

κ←−−− pick κ ∈u {0, 1}k

Success if: h = Hκ(m)
game (a)

A′ D

select m0
m0−−−→
κ←−−− pick κ ∈u {0, 1}k

pick κ′ ∈u {0, 1}k
m0‖κ′

−−−→

Success if: Hκ(m0) = Hκ′(m0), κ
′ 6= κ

game (b)

Figure 13.13. Reduction to the eTCR Game

We conclude that εf ≤ (q+qs +1)(q+qs +qp +1) ·2−r +qs(q+qs +qp +1) ·
√
εH + 2−k

and thus εf is negligible.

• Let E2 be the event that the forgery m̂‖κ̂‖σ̂ is such that ĥ ← Hbκ(m̂) was queried to
simWR. Let game2 be game1 in which E2 occurred.

Since we made sure that ĥ is in the pool, if E2 does not occur, the ĥ was returned
by some preimgWR(w) for the first time once. Note that when preimgWR returns
an unused value, it is uniformly distributed among all unused values. Clearly, A
has to find a pair (m̂, κ̂) with Hbκ(m̂) = ĥ which breaks the one-wayness of H. So,
δ2,1 = Pr[A wins game1]− Pr[A wins game2] ≤ qp · εw.

• Let E3 be the event that ĥ is different from all hi′′ ← Hκi′′
(mi′′). Let game3 be game2

in which E3 occurred.

Clearly, if E3 did not occur, ĥ is equal to hi′′ for a certain i′′. Recall that since A
won his game m̂ is different from all mi′′ . So, A found m̂ and κ̂ such that Hbκ(m̂) =
Hκi′′

(mi′′). Here, A can perfectly be reduced to an eTCR adversary against all Di′′ .
So, δ3,2 = Pr[A wins game2]− Pr[A wins game3] ≤ qs · εH ≤ (ℓ− q) · εH .

• Let E4 be the event that ŵ = w∗. In other words the forged value ŵ is equal to the
expected value w∗. Let game4 be game3 in which E4 occurred. Here, A can perfectly
be reduced to an UF-KMA adversary against S. Clearly, Pr[A wins game4] ≤ εS .

Finally Pr[A wins game3] ≤ q · εS since E4 occurred with probability 1/q and so
Pr[A wins game4]/Pr[A wins game3] = 1/q.

Finally,

Pr[A wins game0] ≤ Pr[A wins game3] + δ3,2 + δ2,1 + δ1,0

≤ q · εS + (ℓ− q) · εH + qp · εw + εf

227

Sylvain Pasini

13.4 The Entropy Recycling Technique

To keep the same signature length, we have to avoid to append κ in the signature. The
idea from [Mir06] is to use the randomness computed in the signature scheme instead of
introducing a new random parameter. Mironov [Mir06] present specific modifications for
the DSA [DSS94, DSS00], RSA-PSS [BR96], and Cramer-Shoup [CS00] signature schemes.
In this section, we generalize the construction from Mironov. For that, we introduce a
special sort of signature schemes: Signature with Randomized Precomputation.

Definition 13.6 (Signature with Randomized Precomputation).
Any Signature with Randomized Precomputation (SRP) consists of five algorithms: setup,
presign, postsign, extract, and verify.

The setup algorithm works as in a standard signature scheme, see Section 11.2.

The signature algorithm is separated in two parts:

• first, a probabilistic precomputation algorithm, called presign, generates the random-
ness without using the message to be signed,

• then, a signature algorithm, called postsign, signs the message using the previous
randomness.

The randomness must be recoverable from the signature itself, which requires the extract
algorithm.

Finally, there must exist a verify algorithm as in any classical signature scheme, see
Section 11.2.

Formally, the five algorithms of any SRP scheme work as follows:

(Kp,Ks)← setup(1λ)
(ξ, r)← presign(Ks) r ← extract(Kp, σ)
σ ← postsign(Ks,m, ξ) b← verify(Kp,m, σ)

Actually, all digital signature schemes can be written this way (e.g., with r void), but we
need r to have a large enough entropy. We provide the necessary quantitative definitions for
that in Section 3.6. When talking about the entropy of a SRP scheme, we implicitly mean
the entropy of r generated by presign(Ks) given a private key Ks.

Standard implementations may be represented by an SRP with pre-hashed message as
depicted in Figure 13.14. Note that in the SRP representation of Figure 13.14 we conserved
the weak hashing WR but in reality, this pre-hashing could be put in the postsign algorithm.

228

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

S.postsign σ

m WR

S*.sign

S.presign

ξ

�
Figure 13.14. The SRP Implementations.

Theorem 13.7 (Randomized Hash-and-Sign Paradigm Recycling the Entropy).
Consider H : {0, 1}k × {0, 1}∗ 7→ {0, 1}n is an eTCR hash function with k-bit keys and S
is a FML-SRP. We assume that the signature construction S∗ based on S defined by

σ′ ← S∗.sign(Ks,m):

• (ξ, r)← S.presign(Ks)

• pick κ ∈u {0, 1}k

• h← Hκ(m)

• σ ← S.postsign(Ks, h, ξ)

• σ′ ← (κ‖σ)

b← S∗.verify(Kp,m, κ‖σ): (σ′ = κ‖σ)

• h← Hκ(m)

• b← S.verify (Kp, h, σ)

is an EF-CMA secure AML-SRP requiring an additional randomness κ.We assume that
the SRP produces k-bit strings that are indistinguishable from uniformly distributed ones.

Consider G is a random oracle with k-bit output strings limited to q queries. The
signature construction S′ defined by

σ′ ← S′.sign(Ks,m):

• (ξ, r)← S.presign(Ks)

• κ← G(r)

• h← Hκ(m)

• σ ← S.postsign(Ks, h, ξ)

• σ′ ← σ

b← S′.verify(Kp,m, σ
′): (σ′ = σ)

• r ← S.extract(Kp, σ)

• κ← G(r)

• h← Hκ(m)

• b← S.verify (Kp, h, σ)

is also EF-CMA-secure even by re-using the randomness from the SRP.

In a nutshell if the construction of Figure 13.15 is secure, then the construction of Fig-
ure 13.16 without additional random coins is also secure. Note that in both figures, the SRP
implementation could contain the hashing but here it is hidden in the postsign algorithm.

229

Sylvain Pasini

S.postsign σ

m

S.presign

ξ

�
S*.sign

κrandom

Hκ

h

κ

Figure 13.15. SRP with Additional Random Coins.

S.postsign σ

m

S.presign

ξ

�
S’.sign

random

Hκ

G
h

κ

Figure 13.16. SRP without Additional Random Coins.

230

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

Proof.
Assume that the AML-SRP construction S∗ is (T + µ, ℓ, εS)-EF-CMA secure and that r is
(T +µ, ℓ, εd)-PR where µ is some polynomially bounded complexity due to the game reduc-
tion. In the following, we prove that the construction S′ is (T, ℓ, εS + εc)-EF-CMA secure
where εc represents the probability of collision on the G outputs as defined in Lemma 3.26.
We consider any EF-CMA adversary A against S′. As depicted in Figure 13.17, we transform
A into an EF-CMA adversary against the (eTCR-based) scheme S∗ by using an algorithm
B. B simulates the random oracle G, the transform of S′.sign to S.sign, and replaces the final
(m̂, σ̂) by (m̂, κ̂, σ̂).

A B C

Kp←−−−− Kp←−−−−−− (Kp,Ks)← S.setup(1λ)

select mi
mi−−−−→

σi←−−−−
simSign

mi−−−−−−→

κi‖σi←−−−−−−

pick κi ∈ {0, 1}k
hi ← Hκi

(mi)
(ξi, ri)← S.presign(Ks)
σi ← S.postsign(Ks, hi, ξi)

select ri
rj−−−−→
κj←−−−− simG

select m̂, σ̂
bm‖bσ−−−−→ r̂ ← extract(Kp, σ̂)

κ̂← G(r̂)
bm‖bκ‖bσ−−−−−−→ ĥ← Hbκ(m̂)

b← S.verify(Kp, ĥ, σ̂)

Winning condition: b = 1 and m̂ /∈ {m1, . . . mℓ}.
Figure 13.17. Reduction to the EF-CMA Game Against the eTCR-based Scheme S∗.

The simulations works as follows:

simG. This simulation works as defined in Section 3.3.

simSign. When A submits a sign-query with input m, B obtains (κ, σ) by querying C with
m and deduces r← extract(Kp, σ). If r is free in the simG table, then it lets κ = G(r)
and returns σ to A, otherwise B fails.

B is allowed to ℓ queries to the S.sign oracle, so A is also allowed to ℓ queries to simSign. At
the end, if A succeeds his EF-CMA game, he will send a tuple (m̂, σ̂) to B. B should then
deliver a tuple (m̂, κ̂, σ̂) to C and for that he computes κ̂ ← r̂ where r̂ is extracted from σ̂.
We use one more time the proof methodology of Shoup [Sho04]:

• Let game0 be the EF-CMA game against S′ as depicted in Figure 11.2.

231

Sylvain Pasini

• Let game1 be the simulated EF-CMA game against S′ depicted in Figure 13.12.

Clearly, the simulation fails if simSign fails, i.e., if an rj in simSign is not free in the
simG table. Let εc the bound on this probability of collision. A detailed expression of
εc is given on Lemma 3.26. It is clearly negligible.

Let E1 the event that all rj are free in the simG table. So, game1 is game0 in which E1

occurred.

By using the difference lemma [Sho04] we obtain

δ1,0 = |Pr[A wins game0]− Pr[A wins game1]| ≤ εc .

In game1, A can perfectly be reduced to an EF-CMA adversary against S∗. So
Pr[A wins game1] ≤ εS .

Finally, we obtain

Pr[A wins game0] ≤ Pr[A wins game1] + δ1,0

≤ εS + εc

13.5 Applications

Consider any signature implementation S∗ based on a textbook signature scheme S and
using the original hash-and-sign paradigm with a (weak) hash function WR, i.e.,

S∗.sign(Ks,m) = S.sign(Ks,WR(m)) .

Assume that S is weakly secure and that some weakness on WR was reported.

By using Theorem 13.5, we can build a strongly secure implementation by adding a pre-
processing Hκ(m) where H is an OW-eTCR hash function. Our new construction S′ defined
by

S′.sign(Ks,m) = S∗.sign(Ks,Hκ(m)) = S.sign(Ks,WR(Hκ(m)))

is strongly secure. Note that it is strongly secure even if the WR is weak. Thanks to our
construction, the actual implementations can still be used, it simply needs to “pre-process”
the input message m. This assumes that WR can be modeled as a preimage-tractable random
oracle.

Note that in the S′ construction the signature enlarges due to the additional random coins
κ.

232

Part II Chapter 13 - Building Secure Schemes based on Weak Hash Functions

By using Theorem 13.7, if the signature scheme S is an SRP, then we can avoid increasing
the signature length by reusing the random coins from the presign algorithm into the pre-
processing Hκ(·).

13.5.1 A Concrete Example with DSA

We apply Theorem 13.5 and Theorem 13.7 to offer a quick fix to DSA in the case that
SHA-1 [SHA95] became subject to preimage attacks. Here, standard implementations of
DSA could still be used: only a “message pre-processing” would be added. First, note that
DSA without hashing can be described using our SRP formalism of Section 13.6. We denote
by m the messages of arbitrary length (input of the sign algorithm) and by h the digest in
DSA, i.e., the 160-bit string. The public parameters are a 160-bit prime q, a 1024-bit prime
p = a · q + 1, and a generator g ∈ Zp of order q.

The DSA construction is depicted in Figure 13.18 where f(m) describes some function
mapping the input message m of arbitrary length to a fixed length string h. f(m) represents
the “message pre-processing”.

(Ks,Kp)← setup(1λ): pick Ks ∈u Zq

Kp ← gKs mod p

σ ← sign(Ks,m, k, r): pick k ∈u Z∗
q

r ← (gk mod p) mod q
h← f(m)

s← h+Ks·r
k mod p

σ ← (r, s)

b← verify(Kp,m, σ): h← f(m)

check r = (g
h
s

mod qy
r
s

mod q mod p) mod q

Figure 13.18. The DSA Construction.

DSA uses the (original) hash-and-sign paradigm. f(m) is simply

h← H∗(m)

where H∗ is a collision resistant hash function.

Consider textbook DSA, i.e., DSA without f , is an UF-∅MA-secure FML-DS. Note that
it is existentially forgeable. Theorem 13.5 says that the scheme of Figure 13.18 where f(m)
is defined by Hκ ◦WR(m), i.e.,

h← WR(Hκ(m)) where κ ∈u {0, 1}k ,

is EF-CMA-secure when WR is a preimage-tractable random oracle (say SHA-1 in practice)
and H is a one-way eTCR hash function. Thus, we build an EF-CMA-secure AML-DS based

233

Sylvain Pasini

on DSA without collision-resistance. Assuming that WR(Hκ(m)) can be instantiated by
SHA1(RMX(κ,m)) where RMX denotes the implementation from Halevi-Krawczyk [HK06b]
of the message randomization, the Halevi-Krawczyk construction is secure. The drawback
is that the signature enlarges sending κ.

Instead of picking some new randomness κ we re-use the randomness from the presign
algorithm if the implementation of DSA allows it, i.e., we use G(r) where G is a random
oracle. Theorem 13.7 says that the scheme of Figure 13.18 where f(m) is defined by HG(r) ◦
WR(m), i.e.,

h←WR(HG(r)(m))

is EF-CMA-secure as well.

From Theorem 13.5 and Theorem 13.7, we deduce that our construction is (T,Q, ε′s)-EF-
CMA-secure where ε′s ≤ εf + qp · εw + (ℓ − q) · εH + q · εS + εc. Assuming an adversary
bounded by a time complexity T and an online complexity Q ≤ T , considering that εH , εs
and εw are all equals to T · 2−160, k is 160-bit long, q, qs, and ℓ are bounded by Q, and qp
is bounded by T , we obtain εf ≤ 9 ·Q · T · 2−160, εc ≤ Q2 · 2−160 and so

ε′s ≤
(
12 ·Q · T +Q2

)
· 2−160.

Clearly, Q · T must be bounded by 2160. Since Q is often near 230, we deduce that T can
be close to 2130 which is much better than actual implementations requiring a complexity
T bounded by 280 to avoid collision attacks.

In summary, by using Theorem 13.5 and Theorem 13.7, we build a DSA-based EF-CMA-
secure scheme for input messages of arbitrary length and with signatures as long as the
original DSA scheme.

234

Chapter

FOURTEEN

Conclusion

There are several ways to establish a secure communication channel over an insecure channel.
In particular, this can be achieved by using only authenticated data (relaxing the confidential
assumption). Data authentication may be done based on different assumptions. In this
thesis, we first consider that an extra authenticated channel is available, see Part I, and then
that a public-key infrastructure is in place (or may be setup with an extra authenticated
channel), see Part II.

With this thesis, we give the following main contributions:

1. We propose a detailed and elaborated model for SAS-based message authentication
protocols (Chapter 4).

2. We analyze the security of generic SAS-based message authentication protocols (Chap-
ter 5). In particular, we give generic attacks and the definition of an optimal protocol.

3. We propose the first optimal non-interactive message authentication protocol, called
PV-NIMAP (Section 7.3).

4. We propose the first optimal two-party SAS-based message mutual-authentication pro-
tocol, called PV-SAS-MMA (Section 8.3), and the first optimal two-party SAS-based
message cross-authentication protocol, called PV-SAS-MCA (Section 8.4).

5. We propose the first optimal SAS-based group message authentication protocol, called
LP-SAS-GMA (Section 9.3).

235

Sylvain Pasini

6. We propose a method to build authenticated key agreements for two-party or group
settings based on a message authentication protocol (Section 10.4). From that, we
propose two optimal SAS-based authenticated key agreement protocols, one specific
to two-party settings, called PV-SAS-AKA (Section 10.5), and another more general
for any group settings, called LP-SAS-GKA (Section 10.6). We also propose a method
to keep long-term pairwise authentication keys in order to setup new (sub) groups
with no additional user interaction.

7. We propose the ONTAP primitive to allow non-transferable signature verification
(Chapter 12). The primitive is an offline non-transferable authentication protocol (ON-
TAP) and is especially designed to fit the authentication mechanism of e-passports.
In a more general view, we propose a way to protect the privacy of the signer, the
owner of the signature, or the signed data.

8. We propose a pre-processing strengthening for the actual implementations of hash-
and-sign-based signature schemes (Chapter 13). We also propose a solution to avoid
the increase in signature length.

14.1 SAS-based Cryptography

Security model. First of all, we gave a detailed security model for SAS-based protocols.
This kind of protocols are special in the sense that they use two types of channels. In
particular, adversaries have full control on all communications but can not create authenti-
cated messages on behalf of another identity. The security model of Chapter 4 is a logical
continuation of the ones given in [Vau05b, Pas05, PV06a, PV06b, LP08, LP09]. Note that
all these models, as well as the one of Chapter 4, are based on the adversarial model from
Bellare and Rogaway [BR93a].

Maximal achievable security. We analyzed the security of SAS-based message authentica-
tion protocols on a global perspective. In particular, we showed that there exists a generic
one-shot attack with probability of success essentially 1/n, where n is the size of the set of
all possible SAS values. We also showed that there exists a generic attack which uses qA
instances of Alice and qB instances of Bob with probability of success essentially 1− e

qAqB
n .

We emphasize that any SAS-based protocol is vulnerable to these generic attacks and, con-
sequently, no protocol can achieve a better security. We conclude that any SAS-based
message authentication protocol in which the best attack succeeds essentially with the same
probability of success than a generic attack is essentially “optimal”.

Security in complex settings. We proved that any SAS-based protocol is provably secure
in any computational context provided that the simple and natural restrictions rules R1–R4

236

Chapter 14 - Conclusion

are fulfilled. More precisely, we first proved that all presented protocols are secure in the
stand-alone model and then showed that any SAS-based message authentication protocol
that is secure in the stand-alone model remains secure in more complex settings.

Interactive versus non-interactive protocols. Concerning unilateral authentication, we
saw the difference between interactive and non-interactive protocols. An (optimal) inter-
active protocol avoids offline attacks and consequently tolerates much shorter SAS than a
non-interactive protocol, e.g., 20 instead of 100 bits. Therefore, an interactive protocol is
more user friendly. However, we saw that protocol interactivity may be a problem for some
applications. For instance, an interactive protocol is not well-suited for SSH since there is
nobody to transfer the (random) SAS from the SSH server to the client user. In short, the
choice between interactive and non-interactive protocols depends on the application.

Unilateral authentication. We saw that the original two-party SAS-based protocol from
Vaudenay [Vau05b] is already optimal. Hence, there was no additional work to do on
unilateral interactive SAS-based message authentication protocols.

However, we saw that the previous non-interactive protocols are not optimal. We proposed
an optimal non-interactive message authentication protocol based on a commitment scheme:
PV-NIMAP. Thanks to the unpredictability of the authenticated value, the SAS is much
shorter. Indeed, considering one-shot attacks, only 80 bits (instead of 160) are required to
achieve the same security level as the SSH key authentication. Considering more general
attacks, the protocol only requires 100 bits. We emphasize that our protocol only requires
second preimage resistance for the hash function.

Bilateral authentication. We saw that the message cross-authentication protocol given by
Vaudenay [Vau05b] is not round-optimal and given with no formal security proof. We first
proposed a new 3-move MMA protocol and then a new 3-move MCA protocol using a generic
commitment scheme: PV-SAS-MCA. Both constructions are optimal and can use a SAS of
20 bits.

Group authentication. We saw that the only prior work is Group-MANA IV which is not
round-optimal. We proposed an optimal SAS-based group message authentication protocol:
LP-SAS-GMA. This protocol is generic and can be executed between any set of participants.

Key agreements. As explained before, setting up a secure communication between two or
more parties requires authenticated communication channels. In this thesis, we presented a
general methodology for protecting ordinary key agreement protocols against active attacks.

237

Sylvain Pasini

More precisely, we presented an efficient construction for authenticated key agreements based
on existing key agreements and SAS-based message authentication protocols.

Thanks to the Diffie-Hellman protocol, our PV-SAS-MCA protocol can make a secure
and efficient SAS-based authenticated key agreement protocol with three moves. This leads
to PV-SAS-AKA. Using the Burmester-Desmedt protocol, our LP-SAS-GMA protocol al-
lows us to build a secure and efficient SAS-based group key agreement. This leads to
LP-SAS-GKA. Additionally, the clever use of long-term public keys provides an efficient
way of managing dynamic groups.

We emphasize here that both final protocols have an optimal security with respect to
the amount of authenticated data and have an optimal number of rounds. Such key agree-
ment protocols have the advantage that they do not require any trusted third party, any
public-key infrastructure, nor any pre-shared key. Peer-to-peer security is ensured by us-
ing an authentication primitive, e.g., voice recognition for voice over IP or string copy for
devices. Therefore, consumers can establish and reconfigure security associations for elec-
tronic devices with minimal effort. In a certain sense, security can be provided as an add-on
feature.

Overview. To emphasize differences between various protocols, we gathered the most im-
portant aspects into Figure 14.1. The contributions of the present thesis are written in black
while prior or further works are written in gray. To distinguish between unkeyed and keyed
hash functions, we use shorthands H(·) and HK(·). Note that for all setups, i.e., unilateral,
bilateral or group, interactive or non-interactive, message authentication and key agreement,
there now exists an optimal provably secure SAS-based protocol. Hence, in the same model,
only small optimizations or efficiency improvements may be done. For instance, our NIMAP
was recently improved in the sense that the CRS model is no longer required but only an
eTCR function.

There is a gap between theoretical constructions and practical instantiations. Most prac-
tical SAS-based key agreement protocols such as the Zfone protocol [ZJC00] and the wireless
USB key agreement protocol [WUS06] use collision resistant hash functions to mimic the
functionality of a commitment scheme. Although this approach cannot be used in general, it
may be appropriate for securing key agreement protocols, since the corresponding authenti-
cated messages have uniform distribution. More formally, a collision resistant hash function
(CRHF) as a deterministic commitment cannot be hiding and non-malleable for an arbi-
trary message distribution. However, hiding and non-malleability with respect to uniform
distribution makes sense also for hash functions. Consequently, it should be possible to give
a formal security proof for these practical protocols. On the other hand, the corresponding
security requirements are very different from the standard ones such as the one-way and the
collision resistance properties. Hence, interpretation of corresponding security requirements

1The security proof is given in a different adversarial model.

238

Chapter 14 - Conclusion

T
yp

e

P
ro

to
co

l

In
te

ra
ct

iv
e

W
ea

k
au

th
.

O
p
ti
m

al

S
ec

.
p
ro

of

P
ri
m

it
iv

es

NIMAP CRHF-based [BSSW02] , , CR H(·)
MANA I, II [GMN04] ≈ , TCR HK(·)
PV-NIMAP [PV06a] , , , Com , WCR H(·)
HCR-based [MS07] , , , HCR HK(·)
eTCR-based [RWSN07] , , , eTCR HK(·)

IMAP Vau-SAS-IMAP [Vau05b] X , , , Com
ICR-based [MS08] X , ? ,

1 ICR HK(·)
MMA MANA III [GMN04] X HK(·)

PV-SAS-MMA [PV06b] X , , , Com
MCA Vau-SAS-MCA [Vau05b] X , Com

PV-SAS-MCA [PV06b] X , , , Com , HK(·)
MANA IV [LN06a] X , , , Com , HK(·)

GMA Group-MANA IV [VAN06] X , , Com , HK(·)
LP-SAS-GMA [LP08] X , , , Com , HK(·)

AKA PGPfone (Zimmermann 95) X , Com , H(·)
Hoepman [Hoe04] X , Com , H(·)
PV-SAS-AKA [PV06b] X , , , Com , HK(·)
LP-SAS-GKA [LP08] X , , , Com , HK(·)

Figure 14.1. Overview of SAS-based Protocols.

239

Sylvain Pasini

is an interesting theoretical and practical problem.

14.2 Preserving the Privacy of Signed Documents

We saw that releasing a (classical) digital signature faces some privacy issues. Indeed, there
are cases where the prover needs to authenticate some data without making it possible for
any malicious verifier to transfer the proof to anyone else, like in e-passports. To solve this
problem, we proposed that the owner of the valid signature proves its knowledge without
revealing it. This proof should be non-transferable.

For that reason, we studied deniability in signature verification. Deniability is essentially
a weaker form of non-transferability. It holds as soon as the protocol is finished (it is often
called offline non-transferability). We introduced Offline Non-Transferable Authentication
Protocol (ONTAP) and we showed that they can be built by using a classical signature
scheme and a deniable zero-knowledge proof of knowledge for that signature.

Usually, Σ-protocols are used as proofs of knowledge. However, they are only honest-
verifier zero-knowledge. Indeed, considering malicious verifier, a protocol transcript may
give evidence of interaction (with the Fiat-Shamir technique). We proposed a generic way
to transform any Σ-protocol into a deniable zero-knowledge proof of knowledge (in the
standard, random oracle, and common reference string) models.

Finally, we gave examples to upgrade signature standards based on RSA or ElGamal into
an ONTAP. Our examples are well-suited for implementation in e-passports. In particular,
they are efficient and compatible with the standard signature schemes used in e-passports.

14.3 Strengthening Signature Schemes Based on the Hash-and-

Sign Paradigm

Consider any signature implementation S∗ based on a textbook signature scheme S and
using the original hash-and-sign paradigm with a hash function WR, i.e., S∗.sign(Ks,m) =
S.sign(Ks,WR(m)). Assume that S is weakly secure and that some weaknesses on WR was
reported. Clearly, WR is a weak hash function and S∗ is insecure.

Usually hash functions are modeled by random oracles, but they deviate more and more
from this model. We saw how to model weak hash function and we recalled the preimage-
tractable random oracle model from Liskov [Lis07].

We showed that it is possible to transform the weak implementation S∗ into a strongly
secure implementation. This transformation only consists in adding a pre-processing Hκ(m)
where H is an OW-eTCR hash function and κ some random coins. Our new construction S′

240

Chapter 14 - Conclusion

is defined by S′.sign(Ks,m) = S∗.sign(Ks,Hκ(m)) = S.sign(Ks,WR(Hκ(m))). S′ is strongly
secure and actual implementations can still be used. Indeed, it simply needs to “pre-process”
the input message. This assumes that WR can be modeled as a preimage-tractable random
oracle.

Usually the random coins κ should be sent with the signature. In other words, the new
signature enlarges. We presented a generic solution to avoid the increase in signature length.
Indeed, we showed how to reuse the random coins from the signature scheme itself.

14.4 Final Notes and Further Work

In this thesis, we analyzed SAS-based message authentication protocols in different settings,
two-party versus group, unilateral versus bilateral, interactive versus non-interactive, etc.
Recall that a SAS is a short authenticated string and may be transmitted from one device
to another by voice, near field communication (NFC), string copy, or string comparison.
The goal was to optimize them in two ways: first, a protocol should use as little as possible
authenticated data, second, it should use a minimal number of rounds. We tried to keep the
computational complexity as light as possible. Today, there is at least one optimal protocol
for each setting as shown in Figure 14.1. Some future work may be done in order to optimize
the computational complexity. Another interesting continuity will be to avoid proofs in the
random oracle or common reference string models. We note that some works already started
in that directions but only for non-interactive unilateral message authentication protocols,
see Figure 14.1. A SAS-based (unilateral) message authentication protocol may be used

• to authenticate a public-key, as in PGP, GPG, SSH, etc.,

• in case of public-key disaster, i.e., when a trusted infrastructure is compromised, as a
temporary quick fix.

We stress that SAS-based message cross-authentication protocols are very useful, in partic-
ular for authenticated key agreements. We proposed to use our (two-party) PV-SAS-AKA
or our (group) LP-SAS-GKA protocols in many applications:

• to establish a secure communication between small devices, e.g., Bluetooth pairing,

• to establish a secret key between a computer and a router (WEP or WPA), a standard
called Wi-Fi Protected Setup (WPS) is in development,

• to establish a secret key between a computer and its devices such as a printer or a
keyboard, there is a standard Wireless USB (WUSB) in development,

• to secure Voice over IP phone calls (or any phone application),

241

Sylvain Pasini

• to establish security associations in ad-hoc networks (MANETs).

One may want to avoid several executions of the SAS-based message authentication pro-
tocol because each run requires user interaction. A solution consists in authenticating long-
term authentication keys once. Indeed, one can use a SAS-based message authentication
protocol to exchange public keys, for instance signature verification keys. After this setup
phase, parties are able to authenticate data as long as they want simply by using a signa-
ture scheme. As before, one may authenticate the messages of a key agreement protocol.
We noticed that using a signature scheme may lead to some privacy issues as well as some
forgeability issues.

Many existing schemes protect the privacy of the signed data, however there were no
scheme adapted for the case of e-passports. In this thesis, we introduced a new primitive,
called Online Non-Transferable Authentication Protocol (ONTAP), filling this gap. We
proposed specific implementations for RSA and ElGamal-based schemes since both may be
used in e-passports. We emphasize that the computational power of an e-passport’s chip is
enough to execute our ONTAP implementations. Further work may be done in proposing
implementations for other signature schemes.

Digital signatures are often proven to be secure in the random oracle model while hash
functions deviate more and more from this idealization. Clearly, if the hash function contains
weaknesses, e.g., collisions are discovered, the whole signature scheme becomes weak. We
proved that by only adding a (generic) pre-processing to the (weak) insecure signature
implementation, we can transform it into a strong signature scheme. We also proposed a
solution to avoid the increase in signature length.

242

Appendix

A

Birthday Paradox

In this section, we briefly present the result of the Birthday paradox in the case we are
looking for a collision between two sets. The method we use is similar to the one from Katz
and Lindell [KL08].

Consider we choose uniformly and at random q1 and q2 elements x1, . . . , xq1 and y1, . . . , yq2

among a set of size n. The birthday paradox gives the probability that there is a collision
between these two sets, i.e., there exists a pair i, j such that xi = yj. We denote by Coll the
event a collision occurred and by NoColl the inverse. Clearly,

Pr[Coll] = Pr[∃ i, j, 1 ≤ i ≤ q1, 1 ≤ j ≤ q2 : xi = yj]

and

Pr[Coll] = 1− Pr[NoColl] .

For the proof, we denote NoColli,j the event that there is no collision between the sets
{x1, . . . , xi} and {y1, . . . , yj}. If NoCollq1,q2 occurs then NoCollq1,j must have occurred for
all j < q2. Thus,

Pr[NoCollq1,j] = Pr[NoCollq1,0] · Pr[NoCollq1,1|NoCollq1,0] · Pr[NoCollq1,2|NoCollq1,1] · . . .
. . . · Pr[NoCollq1,q2|NoCollq1,q2−1] .

Note that Pr[NoCollq1,0] = 1 since the second set is empty and thus there is no element to
collide. Pr[NoCollq1,j+1|NoCollq1,j] is the probability that the j + 1th element collides with

243

Sylvain Pasini

one in the first set. So, the probability is 1− q1/n.
Now, we can write

Pr[Coll] = 1− Pr[NoColl] = 1−
q2∏

i=1

Pr[NoCollq1,i|NoCollq1,i−1] .

When q1 < n, we have 1− q1

n ≤ e−
q1
n and finally we obtain

Pr[Coll] ≥ 1−
q2∏

i=1

e−
q1
n = 1− e−

q1q2
n .

244

Bibliography

[AA04] Dmitri Asonov and Rakesh Agrawal. Keyboard Acoustic Emanations. In
2004 IEEE Symposium on Security and Privacy (S&P 2004), 9-12 May 2004,
Berkeley, CA, USA, pages 3–11. IEEE Computer Society, 2004.

[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
The EM Side-Channel(s). In Burton S. Kaliski Jr., Çetin Kaya Koç, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15,
2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 29–45. Springer, 2003.

[AES01] Advanced encryption standard (AES). Federal Information Processing Stan-
dards, Publication 197, U.S. Department of Commerce, National Institute of
Standards and Technology, 2001.

[AK99] Ross J. Anderson and Markus G. Kuhn. Soft Tempest – An Opportunity for
NATO. Protecting NATO Information Systems in the 21st Century, Washing-
ton, DC, Oct 25-26, 1999.

[AK04] Ross J. Anderson and Markus G. Kuhn. Lost Cost Countermeasures Against
Compromising Electromagnetic Computer Emanations. United States Patent
US 6,721,324 B1, 2004.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair Exchange of
Digital Signatures (Extended Abstract). In Kaisa Nyberg, editor, Advances
in Cryptology – EUROCRYPT ’98: International Conference on the Theory
and Application of Cryptographic Techniques, volume 1403 of Lecture Notes in
Computer Science, pages 591–606, Espoo, Finland, May 1998. Springer-Verlag.

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair Exchange of
Digital Signatures (Extended Abstract). IEEE Journal on Selected Areas in
Communications, 18(4):593–610, 2000.

245

Sylvain Pasini

[BB05] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowledge to
avoid real-time attacks. In Ryôichi Sasaki, Sihan Qing, Eiji Okamoto, and Hi-
roshi Yoshiura, editors, Security and Privacy in the Age of Ubiquitous Comput-
ing, IFIP TC11 20th International Conference on Information Security (SEC
2005), May 30 - June 1, 2005, Chiba, Japan. Springer, 2005.

[BBS86] Lenore Blum, Manuel Blum, and Mike Shub. A Simple Unpredictable Pseudo-
Random Number Generator. SIAM J. Comput., 15(2):364–383, 1986.

[BC93] Stefan Brands and David Chaum. Distance-bounding protocols. In Tor
Helleseth, editor, Advances in cryptology – EUROCRYPT ’93: Workshop on
the Theory and Application of Cryptographic Techniques, volume 765 of Lec-
ture Notes in Computer Science, pages 344–359, Lofthus, Norway, May 1993.
Springer-Verlag.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Sciences, 37(2):156–
189, 1988.

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet,
and William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT ’05: The 24th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, volume 3494 of Lecture Notes in Computer Science, pages 36–57,
Aarhus, Denmark, 2005. Springer-Verlag.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Neal Koblitz, editor, Advances in Cryptology –
CRYPTO ’96: The 16th Annual International Cryptology Conference, volume
1109 of Lecture Notes in Computer Science, pages 1–15, Santa Barbara, Cali-
fornia, U.S.A., August 1996. Springer-Verlag.

[BCV08] Davide Balzarotti, Marco Cova, and Giovanni Vigna. ClearShot: Eavesdrop-
ping on Keyboard Input from Video. In 2008 IEEE Symposium on Security
and Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA, pages
170–183. IEEE Computer Society, 2008.

[BD05] Mike Burmester and Yvo Desmedt. A secure and scalable Group Key Exchange
system. Information Processiong Letter, 94(3):137–143, 2005.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete
Security Treatment of Symmetric Encryption. In IEEE Computer Society,
editor, 38th Annual Symposium on Foundations of Computer Science, FOCS
’97, pages 394–403, Miami Beach, Florida, USA, 1997.

246

Bibliography

[BDPR97] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Rela-
tions Among Notions of Security for Public-Key Encryption Schemes. In Hugo
Krawczyk, editor, Advances in Cryptology – CRYPTO ’98: The 18th Annual
International Cryptology Conference, volume 1462 of Lecture Notes in Com-
puter Science, pages 26–45, Santa Barbara, California, U.S.A., August 1997.
Springer-Verlag.

[BDU08] Michael Backes, Markus Dürmuth, and Dominique Unruh. Compromising
Reflections-or-How to Read LCD Monitors around the Corner. In 2008 IEEE
Symposium on Security and Privacy (S&P 2008), 18-21 May 2008, Oakland,
California, USA, pages 158–169. IEEE Computer Society, 2008.

[BG93] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO ’92: The 14th
Annual International Cryptology Conference, volume 740 of Lecture Notes in
Computer Science, pages 390–420, Santa Barbara, California, U.S.A., August
1993. Springer-Verlag.

[BGP06] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A Practical
Stream Cipher with Provable Security. In Serge Vaudenay, editor, Advances in
Cryptology – EUROCRYPT ’06: The 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, volume 4004 of
Lecture Notes in Computer Science, pages 109–128, St-Petersburg, Russia,
May 2006. Springer-Verlag.

[BKK90] Joan F. Boyar, Stuart A. Kurtz, and Mark W. Krentel. A discrete loga-
rithm implementation of perfect zero-knowledge blobs. Journal of Cryptology,
2(2):63–76, 1990.

[Blu03] Bluetooth. Specification of the Bluetooth System. Version 1.2, 2003.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower Bounds for Non-
Black-Box Zero Knowledge. In FOCS ’03: The 44th Symposium on Founda-
tions of Computer Science, pages 384–393, Cambridge, MA, USA, October
2003. IEEE Computer Society.

[BLV04] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower Bounds for Non-
Black-Box Zero Knowledge. Cryptology ePrint Archive, Report 2004/226,
2004. http://eprint.iacr.org/. Full version of [BLV03].

[BR93a] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribu-
tion. In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93:
The 13th Annual International Cryptology Conference, volume 773 of Lecture
Notes in Computer Science, pages 232–249, Santa Barbara, California, U.S.A.,
August 1993. Springer-Verlag.

247

Sylvain Pasini

[BR93b] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Ravi Ganesan and Ravi Sandhu, editors,
CCS ’93: Proceedings of the 1st ACM conference on Computer and Commu-
nications Security, pages 62–73, Fairfax, Virginia, U.S.A., 1993. ACM Press.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution:
the three party case. In STOC ’95: Proceedings of the twenty-seventh annual
ACM Symposium on Theory Of Computing, pages 57–66, Las Vegas, Nevada,
U.S.A., May 1995. ACM press.

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures
– How to Sign with RSA and Rabin. In Maurer Ueli, editor, Advances in
Cryptology – EUROCRYPT ’96: Workshop on the Theory and Application of
Cryptographic Techniques, volume 1070 of Lecture Notes in Computer Science,
pages 399–416, Saragossa, Spain, May 1996. Springer-Verlag.

[BR97] Mihir Bellare and Phillip Rogaway. Towards Making UOWHFs Practical. In
Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO ’97: The 17th
Annual International Cryptology Conference, volume 1294 of Lecture Notes in
Computer Science, pages 470–484, Santa Barbara, California, U.S.A., August
1997. Springer-Verlag.

[BS99] Mihir Bellare and Amit Sahai. Non-malleable Encryption: Equivalence be-
tween Two Notions, and an Indistinguishability-Based Characterization. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO ’99: The 19th
Annual International Cryptology Conference, volume 1666 of Lecture Notes in
Computer Science, pages 519–536, Santa Barbara, California, U.S.A., August
1999. Springer-Verlag.

[BSNS05] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Universal Designated
Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signa-
ture). In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT ’05:
The 11th International Conference on the Theory and Application of Cryp-
tology and Information Security, volume 3788 of Lecture Notes in Computer
Science, pages 644–661, Chennai, India, December 2005. Springer-Verlag.

[BSSW02] Dirk Balfanz, Diana K. Smetters, Paul Stewart, and H. Chi Wong. Talking
To Strangers: Authentication in Ad-Hoc Wireless Networks. In Proceedings
of NDSS ’02: The Network and Distributed System Security Symposium, San
Diego, California, U.S.A, February 2002.

[BWY06] Yigael Berger, Avishai Wool, and Arie Yeredor. Dictionary attacks using key-
board acoustic emanations. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference

248

Bibliography

on Computer and Communications Security, CCS 2006, Alexandria, VA, USA,
Ioctober 30 - November 3, 2006, pages 245–254. ACM, 2006.

[Can97] Ran Canetti. Towards Realizing Random Oracles: Hash Functions that Hide
All Partial Information. In Burton S. Kaliski Jr., editor, Advances in Cryptol-
ogy – CRYPTO ’97: The 17th Annual International Cryptology Conference,
volume 1294 of Lecture Notes in Computer Science, pages 455–469, Santa Bar-
bara, California, U.S.A., August 1997. Springer-Verlag.

[Can00] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. Cryptology ePrint Archive, Report 2000/067.
http://eprint.iacr.org/, 2000.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In FOCS, pages 136–145, 2001.

[CCH05] Mario Cagalj, Srdjan Capkun, and Jean-Pierre Hubaux. Key Agreement in
Peer-to-peer Wireless Networks. In Proceedings of the IEEE, Special Issue in
Security and Cryptography, 2005.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Philip D. MacKenzie. Efficient Zero-
Knowledge Proofs of Knowledge Without Intractability Assumptions. In
Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography – PKC ’00:
The 3rd International Workshop on Practice and Theory in Public Key Cryp-
tography, volume 1751 of Lecture Notes in Computer Science, pages 354–372,
Melbourne, Victoria, Australia, January 2000. Springer-Verlag.

[CF01] Ran Canetti and Marc Fischlin. Universally Composable Commitments. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO ’01: The 21st Annual
International Cryptology Conference, volume 2139 of Lecture Notes in Com-
puter Science, pages 19–40, Santa Barbara, California, USA, August 2001.
Springer-Verlag.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited (preliminary version). In STOC ’98: Proceedings of the thirtieth
annual ACM Symposium on Theory Of Computing, pages 209–218, Dallas,
Texas, USA, 1998. ACM Press.

[CGHGN01] Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong Q.
Nguyen. Paillier’s Cryptosystem Revisited. In Pierangela Samarati, editor,
CCS ’01: Proceedings of the 8th ACM conference on Computer and Commu-
nications Security, pages 206–214, Philadelphia, Pennsylvania, U.S.A., 2001.
ACM Press.

[Cha84] David Chaum. Blind Signature System. In David Chaum, editor, Advances in
Cryptology – CRYPTO ’83, page 153. Plenum Press, 1984.

249

http://eprint.iacr.org/

Sylvain Pasini

[Cha94] David Chaum. Designated Confirmer Signatures. In Alfredo De Santis, ed-
itor, Advances in Cryptology – EUROCRYPT ’94: Workshop on the Theory
and Application of Cryptographic Techniques, volume 950 of Lecture Notes in
Computer Science, pages 86–91, Perugia, Italy, May 1994. Springer-Verlag.

[CL08] Zhengjun Cao and Mulan Liu. Classification of signature-only signature mod-
els. Science in China Series F: Information Sciences, 51(8):1083–1095, 2008.

[CM00] Jan Camenisch and Markus Michels. Confirmer Signature Schemes Secure
against Adaptive Adversaries. In Bart Preneel, editor, Advances in Cryptology
– EUROCRYPT ’00: International Conference on the Theory and Applica-
tion of Cryptographic Techniques, volume 1807 of Lecture Notes in Computer
Science, pages 243–258, Bruges, Belgium, May 2000. Springer-Verlag.

[CS00] Ronald Cramer and Victor Shoup. Signature Schemes Based on the Strong
RSA Assumption. ACM Transactions on Information and System Security,
3(3):161–185, 2000.

[CS02] Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm
for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In Lars R.
Knudsen, editor, Advances in Cryptology – EUROCRYPT ’02: International
Conference on the Theory and Applications of Cryptographic Techniques, vol-
ume 2332 of Lecture Notes in Computer Science, pages 45–64, Amsterdam,
The Netherlands, April 2002. Springer-Verlag.

[CvA90] David Chaum and Hans van Antwerpen. Undeniable Signatures. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO ’89: The 9th Annual
International Cryptology Conference, volume 435 of Lecture Notes in Computer
Science, pages 212–217, Santa Barbara, California, U.S.A., 1990. Springer-
Verlag.

[CvH91] David Chaum and Eugène van Heyst. Group Signatures. In Donald W. Davies,
editor, Advances in Cryptology – EUROCRYPT ’91, Workshop on the Theory
and Application of Cryptographic Techniques, volume 547 of Lecture Notes in
Computer Science, pages 257–265, Brighton, UK, April 1991. Springer-Verlag.

[CW79] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[Dam90] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO ’89: The 9th Annual International
Cryptology Conference, volume 435 of Lecture Notes in Computer Science,
pages 416–427, Santa Barbara, California, U.S.A., 1990. Springer-Verlag.

250

Bibliography

[Dam00] Ivan Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT
’00: International Conference on the Theory and Application of Cryptographic
Techniques, volume 1807 of Lecture Notes in Computer Science, pages 418–430,
Bruges, Belgium, May 2000. Springer-Verlag.

[Dam05] Ivan Damg̊ard. On Σ-protocols. Lecture Notes, 2005.

[DB94] Yvo Desmedt and Mike Burmester. A secure and efficient conference key distri-
bution system (extended abstract). In Alfredo De Santis, editor, Advances in
Cryptology – EUROCRYPT ’94: Workshop on the Theory and Application of
Cryptographic Techniques, volume 950 of Lecture Notes in Computer Science,
pages 275–286, Perugia, Italy, May 1994. Springer-Verlag.

[DCIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-Interactive
and Non-Malleable Commitment. In STOC ’98: Proceedings of the thirtieth
annual ACM Symposium on Theory Of Computing, pages 141–150, Dallas,
Texas, USA, 1998. ACM Press.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography
(Extended Abstract). In STOC ’91: Proceedings of the Twenty Third An-
nual ACM Symposium on Theory of Computing, pages 542–552, New Orleans,
Louisiana, U.S.A., May 1991. ACM Press.

[DDN03] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable Cryptography.
SIAM Review, 45(4):727–784, 2003.

[DES77] Announcing the Data Encryption Standard (DES). Federal Information Pro-
cessing Standard, Publication 46, National Institute of Standards and Tech-
nology (NIST), 1977.

[Des88] Yvo Desmedt. Subliminal-Free Authentication and Signature (Extended Ab-
stract). In C. G. Günther, editor, Advances in Cryptology – EUROCRYPT ’88:
Workshop on the Theory and Application of Cryptographic Techniques, volume
330 of Lecture Notes in Computer Science, pages 23–33, Davos, Switzerland,
August 1988. Springer-Verlag.

[DES99] Data Encryption Standard (DES). Federal Information Processing Standard,
Publication 46-3, National Institute of Standards and Technology (NIST),
1999.

[DF90] Yvo Desmedt and Yair Frankel. Threshold Cryptosystems. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO ’89: The 9th Annual International
Cryptology Conference, volume 435 of Lecture Notes in Computer Science,
pages 307–315, Santa Barbara, California, U.S.A., 1990. Springer-Verlag.

251

Sylvain Pasini

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable
commitment schemes. In STOC ’03: Proceedings of the thirty-fifth annual
ACM Symposium on Theory Of Computing, pages 426–437, San Diego, Cali-
fornia, U.S.A., 2003. ACM Press.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, IT–22(6):644–654, November 1976.

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect Hiding and Perfect Binding
Universally Composable Commitment Schemes with Constant Expansion Fac-
tor. In Moti Yung, editor, Advances in Cryptology – CRYPTO ’02: The 22nd
Annual International Cryptology Conference, volume 2442 of Lecture Notes in
Computer Science, pages 581–596, Santa Barbara, California, U.S.A., August
2002. Springer-Verlag.

[DSS94] Digital signature standard (DSS). Federal Information Processing Standard,
Publication 186, U.S. Department of Commerce, National Institute of Stan-
dards and Technology, 1994.

[DSS00] Digital signature standard (DSS). Federal Information Processing Standard,
Publication 186-2, U.S. Department of Commerce, National Institute of Stan-
dards and Technology, 2000.

[ECD98] ANSI X9.62. Public Key Cryptography for the Financial Service Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA). American National
Standard Institute. American Bankers Associtaion, 1998.

[EL85] Wim Van Eck and Neher Laborato. Electromagnetic Radiation from Video
Display Units: An Eavesdropping Risk. Computers & Security, 4:269–286,
1985.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[FF00] Marc Fischlin and Roger Fischlin. Efficient Non-malleable Commitment
Schemes. In Mihir Bellare, editor, Advances in Cryptology – CRYPTO ’00:
The 20th Annual International Cryptology Conference, volume 1880 of Lecture
Notes in Computer Science, pages 413–431, Santa Barbara, California, U.S.A.,
2000. Springer-Verlag.

[FS87] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology – CRYPTO ’86: A Conference on the Theory and Applications of
Cryptographic Techniques, volume 263 of Lecture Notes in Computer Science,
pages 186–194, Santa Barbara, California, USA, August 1987. Springer-Verlag.

252

Bibliography

[GK96] Oded Goldreich and Ariel Kahan. How To Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, 9(3):167–189, 1996.

[GKR00] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. RSA-Based Undeniable
Signatures. Journal of Cryptology, 13(4):397–416, 2000.

[GMN04] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual Authenti-
cation for Wireless Devices. RSA Cryptobytes, 7(1):29–37, January 2004.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer,
2001.

[GMR84] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A ”Paradoxi-
cal’”Solution to the Signature Problem (Abstract). In G. R. Blakley and David
Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84, Santa
Barbara, California, USA, August 19-22, 1984, Proceedings, volume 196 of
Lecture Notes in Computer Science, pages 441–448. Springer-Verlag, 1984.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Com-
plexity of Interactive Proof-Systems. In STOC ’85: Proceedings of the sev-
enteenth annual ACM Symposium on Theory Of Computing, pages 291–304,
Providence, RI, U.S.A., 1985. ACM press.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complex-
ity of Interactive Proof Systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Noth-
ing But Their Validity or All Languages in NP Have Zero-Knowledge Proof
Systems. Journal of the ACM, 38(1):691–729, 1991.

[GN04] Christian Gehrmann and Kaisa Nyberg. Security in Personal Area Networks.
Security for Mobility, pages 191–230, 2004.

[Gol01] Oded Goldreich. Foundations of Cryptography. Cambridge University Press,
2001.

253

Sylvain Pasini

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A Practical Zero-Knowledge
Protocol Fitted to Security Microprocessor Minimizing Both Trasmission and
Memory. In C. G. Günther, editor, Advances in Cryptology – EUROCRYPT
’88: Workshop on the Theory and Application of Cryptographic Techniques,
volume 330 of Lecture Notes in Computer Science, pages 123–128, Davos,
Switzerland, August 1988. Springer-Verlag.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “Paradoxical” Identity-
Based Signature Scheme Resulting from Zero-Knowledge. In Shafi Goldwasser,
editor, Advances in Cryptology – CRYPTO ’88: The 8th Annual International
Cryptology Conference, volume 403 of Lecture Notes in Computer Science,
pages 216–231, Santa Barbara, California, U.S.A., 1990. Springer-Verlag.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459: Internet X.509 Pub-
lic Key Infrastructure Certificate and CRL Profile. IETF RFC Publication,
January 1999.

[HK06a] Shai Halevi and Hugo Krawczyk. Strengthening Digital Signatures via Ran-
domized Hashing. In Victor Shoup, editor, Advances in Cryptology – CRYPTO
’06: The 26th Annual International Cryptology Conference, volume 4117 of
Lecture Notes in Computer Science, pages 41–59, Santa Barbara, California,
U.S.A., August 2006. Springer-Verlag.

[HK06b] Shai Halevi and Hugo Krawczyk. The RMX Transform and Digital Signatures.
http://www.ee.technion.ac.il/∼hugo/rhash/, 2006.

[Hoe04] Jaap-Henk Hoepman. The Ephemeral Pairing Problem. In Ari Juels, editor,
Financial Cryptography – FC ’04: The 8th International Conference, volume
3110 of Lecture Notes in Computer Science, pages 212–226, Key West, FL,
USA, February 2004. Springer-Verlag.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas
Johansson, editor, FSE ’03: Fast Software Encryption: 10th International
Workshop, volume 2887 of Lecture Notes in Computer Science, pages 129–153,
Lund, Sweden, January 2003. Springer-Verlag.

[IN83] K. Itakura, , and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research Development 71, October 1983.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier
Proofs and Their Applications. In Maurer Ueli, editor, Advances in Cryptol-
ogy – EUROCRYPT ’96: Workshop on the Theory and Application of Crypto-
graphic Techniques, volume 1070 of Lecture Notes in Computer Science, pages
143–154, Saragossa, Spain, May 1996. Springer-Verlag.

254

Bibliography

[JV96] Mike Just and Serge Vaudenay. Authenticated Multi-Party Key Agreement.
In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology –
ASIACRYPT ’96: International Conference on the Theory and Applications
of Cryptology and Information Security, volume 1163 of Lecture Notes in Com-
puter Science, pages 36–49, Kyongju, Korea, November 1996. Springer-Verlag.

[JV03] Pascal Junod and Serge Vaudenay. FOX Specifications Version 1.1. In Tech-
nical Report EPFL/IC/2003/82, EPFL, 2003.

[KA98] Markus G. Kuhn and Ross J. Anderson. Soft Tempest: Hidden Data Trans-
mission Using Electromagnetic Emanations. In David Aucsmith, editor, Infor-
mation Hiding, Second International Workshop, Portland, Oregon, USA, April
14-17, 1998, Proceedings, volume 1525 of Lecture Notes in Computer Science,
pages 124–142. Springer, 1998.

[KL08] Jonathan Katz and Yahuda Lindell. Introduction to Modern Cryptography.
Chapman and Hall/CRC press, 2008.

[Kra94] Hugo Krawczyk. LFSR-based Hashing and Authentication. In Yvo Desmedt,
editor, Advances in Cryptology – CRYPTO ’94: The 14th Annual Interna-
tional Cryptology Conference, volume 839 of Lecture Notes in Computer Sci-
ence, pages 129–139, Santa Barbara, California, U.S.A., August 1994. Springer-
Verlag.

[Kuh03] Markus G. Kuhn. Compromising Emanations: Eavesdropping risks of Com-
puter Displays. Technical Report UCAM-CL-TR-577, 2003.

[Kuh05] Markus G. Kuhn. Security Limits for Compromising Emanations. In Josyula R.
Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - Septem-
ber 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Science,
pages 265–279. Springer, 2005.

[LdW05] Arjen K. Lenstra and Benne de Weger. On the Possibility of Construct-
ing Meaningful Hash Collisions for Public Keys. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP ’05: The 10th Australasian Confer-
ence on Information Security and Privacy, volume 3574 of Lecture Notes in
Computer Science, pages 267–279, Brisbane, Australia, 2005. Springer-Verlag.

[Lin03] Yehuda Lindell. General composition and universal composability in secure
multi-party computation. In FOCS ’03: The 44th Symposium on Foundations
of Computer Science, pages 394–403, Cambridge, MA, USA, October 2003.
IEEE Computer Society.

255

Sylvain Pasini

[Lis07] Moses Liskov. Constructing an Ideal Hash Function from Weak Ideal Compres-
sion Functions. In Eli Biham and Amr R. Youssef, editors, SAC ’06: The 13th
Annual Workshop on Selected Areas in Cryptography, pages 358–375, Mon-
treal, Quebec, Canada, August 2007.

[LN06a] Sven Laur and Kaisa Nyberg. Efficient Mutual Data Authentication Using
Manually Authenticated Strings. In David Pointceval, Yi Mu, and Kefei Chen,
editors, CANS ’06: The 5th International Conference on Cryptology and Net-
work Security, volume 4301 of LNCS, pages 90–107, Suzhou, Jiangsu, China,
December 2006. Springer-Verlag.

[LN06b] Sven Laur and Kaisa Nyberg. Efficient Mutual Data Authenti-
cation Using Manually Authenticated Strings (Extended version).
http://www.tcs.hut.fi/Publications/slaur/MANA-IV.pdf, 2006.

[LP08] Sven Laur and Sylvain Pasini. SAS-Based Group Authentication and Key
Agreement Protocols. In Ronald Cramer, editor, Public Key Cryptography –
PKC ’08: The 11th International Conference on Theory and Practice of Public
Key Cryptography, volume 4939 of Lecture Notes in Computer Science, pages
197–213, Barcelona, Spain, March 2008. Springer-Verlag.

[LP09] Sven Laur and Sylvain Pasini. User-Aided Data Authentication. International
Journal of Security and Networks, 4(1):69–86, 2009.

[LU02] Joe Loughry and David A. Umphress. Information leakage from optical ema-
nations. ACM Trans. Inf. Syst. Secur., 5(3):262–289, 2002.

[LW06] Jin Li and Yanming Wang. Universal Designated Verifier Ring Signature
(Proof) Without Random Oracles. In Xiaobo Zhou, Oleg Sokolsky, Lu Yan,
Eun-Sun Jung, Zili Shao, Yi Mu, Dong Chun Lee, Daeyoung Kim, Young-Sik
Jeong, and Cheng-Zhong Xu, editors, Emerging directions in Embedded and
Ubiquitous Computing, EUC ’06 Workshops: NCUS, SecUbiq, USN, TRUST,
ESO, and MSA, volume 4097 of Lecture Notes in Computer Science, pages
332–341, Seoul, Korea, August 2006. Springer-Verlag.

[LWdW05] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding
X.509 Certificates. Cryptology ePrint Archive, Report 2005/067, 2005.
http://eprint.iacr.org/.

[Mas08] Atefeh Mashatan. Message Authentication and Recognition Protocols Using
Two-Channel Cryptography. PhD thesis, University of Waterloo, Ontario,
Canada, 2008.

[Mer78] Ralph C. Merkle. Secure communications over insecure channels. Communi-
cations of the ACM, 21(4):294–299, 1978.

256

http://www.tcs.hut.fi/Publications/slaur/MANA-IV.pdf
http://eprint.iacr.org/

Bibliography

[Mer90] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO ’89: The 9th Annual International
Cryptology Conference, volume 435 of Lecture Notes in Computer Science,
pages 428–446, Santa Barbara, California, U.S.A., 1990. Springer-Verlag.

[Mir06] Ilya Mironov. Collision-Resistant No More: Hash-and-Sign Paradigm Revis-
ited. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors,
Public Key Cryptography – PKC ’06: The 9th International Conference on
Theory and Practice of Public Key Cryptography, volume 3958 of Lecture Notes
in Computer Science, pages 140–156, New York, USA, April 2006. Springer-
Verlag.

[Mon06] Jean Monnerat. Short Undeniable Signatures: Design, Analysis, and Applica-
tions. PhD thesis, n◦3691, EPFL, Lausanne, Switzerland, 2006.

[MÖPV07] Elke De Mulder, Siddika Berna Örs, Bart Preneel, and Ingrid Verbauwhede.
Differential power and electromagnetic attacks on a FPGA implementation of
elliptic curve cryptosystems. Computers & Electrical Engineering, 33(5-6):367–
382, 2007.

[MPV09] Jean Monnerat, Sylvain Pasini, and Serge Vaudenay. Efficient Deniable
Authentication for Standard Signatures. In Michel Abdalla and David
Pointcheval, editors, ACNS ’09: International Conference on Applied Cryptog-
raphy and Network Security, volume 5536 of Lecture Notes in Computer Sci-
ence, pages ???–???, Paris-Rocquencourt, France, June 2009. Springer-Verlag.

[MRT04a] Machine Readable Travel Documents. Development of a Logical Data Structure
— LDS For Optional Capacity Expansion Technologies. Version 1.7., 2004.
http://www.icao.int/mrtd/download/technical.cfm.

[MRT04b] Machine Readable Travel Documents. PKI for Machine Readable Travel Doc-
uments offering ICC Read-Only Access. Version 1.1., 2004.
http://www.icao.int/mrtd/download/technical.cfm.

[MS07] Atefeh Mashatan and Douglas R. Stinson. Noninteractive Two-Channel Mes-
sage Authentication based on Hybrid-Collision Resistant Hash Functions. IET
Proceedings Information Security, 1(3):111–118, 2007.

[MS08] Atefeh Mashatan and Douglas R. Stinson. Interactive Two-Channel Message
Authentication based on Interactive-Collision Resistant Hash Functions. In-
ternational Journal of Information Security, 2008.

[MUO96] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures for
delegating signing operation. In ACM Conference on Computer and Commu-
nications Security, pages 48–57, 1996.

257

Sylvain Pasini

[MV04] Jean Monnerat and Serge Vaudenay. Generic Homomorphic Undeniable Sig-
natures. In Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT ’04:
The 10th International Conference on the Theory and Application of Cryp-
tology and Information Security, volume 3329 of Lecture Notes in Computer
Science, pages 354–371, Jeju Island, Korea, December 2004. Springer-Verlag.

[MVV07] Jean Monnerat, Serge Vaudenay, and Martin Vuagnoux. About Machine-
Readable Travel Documents – Privacy Enhancement Using (Weakly) Non-
Transferable Data Authentication. In Proceedings of RFIDSEC ’07, 2007.

[MY04] Philip MacKenzie and Ke Yang. On Simulation-Sound Trapdoor Commit-
ments. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptol-
ogy – EUROCRYPT ’04: International Conference on the Theory and Applica-
tions of Cryptographic Techniques, volume 3027 of Lecture Notes in Computer
Science, pages 382–400, Interlaken, Switzerland, May 2004. Springer-Verlag.

[NSS06] Moni Naor, Gil Segev, and Adam Smith. Tight bounds for unconditional
authentication protocols in the manual channel and shared key models. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO ’06: The 26th An-
nual International Cryptology Conference, volume 4117 of Lecture Notes in
Computer Science, pages 214–231, Santa Barbara, California, U.S.A., August
2006. Springer-Verlag.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryp-
tographic applications. In Proceedings of the Twenty First Annual ACM Sym-
posium on Theory of Computing, pages 33–43, New York, NY, USA, 1989.
Seattle, WA, USA.

[OO91] Tatsuaki Okamoto and Kazuo Ohta. How to Utilize the Randomness of Zero-
Knowledge Proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, Ad-
vances in Cryptology – CRYPTO ’90: The 10th Annual International Cryp-
tology Conference, volume 537 of Lecture Notes in Computer Science, pages
456–475, Santa Barbara, California, U.S.A., 1991. Springer-Verlag.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT ’99: International Conference on the Theory and Application of Cryp-
tographic Techniques, volume 1592 of Lecture Notes in Computer Science,
pages 223–238, Prague, Czech Republic, May 1999. Springer-Verlag.

[Pas03] Rafael Pass. On Deniability in the Common Reference String and Random
Oracle Model. In Dan Boneh, editor, Advances in Cryptology – CRYPTO ’03:
The 23rd Annual International Cryptology Conference, volume 2729 of Lecture
Notes in Computer Science, pages 316–337, Santa Barbara, California, U.S.A.,
August 2003. Springer-Verlag.

258

Bibliography

[Pas04] Rafael Pass. Alternative Variants of Zero-Knowledge Proofs. Licentiate Thesis,
Stockholm, Sweden, 2004.

[Pas05] Sylvain Pasini. Secure Communications over Insecure Channels Using an Au-
thenticated Channel. Master’s thesis, Swiss Federal Institute of Technology
(EPFL), 2005. http://lasecwww.epfl.ch/.

[Ped91] Torben P. Pedersen. Non-Interactive and Information-Theoretic Secure Ver-
ifiable Secret Sharing. In Joan Feigenbaum, editor, Advances in Cryptology
– CRYPTO ’91: The 11th Annual International Cryptology Conference, vol-
ume 576 of Lecture Notes in Computer Science, pages 129–140, Santa Barbara,
California, U.S.A., 1991. Springer-Verlag.

[Pfi91] Birgit Pfitzmann. Fail-stop signatures. In Compsec ’91: 8th world conference
on computer security, audit and control, pages 125–134, 1991.

[PV05] Thomas Peyrin and Serge Vaudenay. The Pairing Problem with User Inter-
action. In Ryôichi Sasaki, Sihan Qing, Eiji Okamoto, and Hiroshi Yoshiura,
editors, Security and Privacy in the Age of Ubiquitous Computing, IFIP TC11
20th International Conference on Information Security (SEC 2005), May 30 -
June 1, 2005, Chiba, Japan, pages 251–266. Springer, 2005.

[PV06a] Sylvain Pasini and Serge Vaudenay. An Optimal Non-interactive Message Au-
thentication Protocol. In David Pointcheval, editor, Topics in Cryptology –
CT-RSA ’06: The Cryptographers’ Track at the RSA Conference 2006, vol-
ume 3860 of Lecture Notes in Computer Science, pages 280–294, San Jose,
CA, USA, February 2006. Springer-Verlag.

[PV06b] Sylvain Pasini and Serge Vaudenay. SAS-based Authenticated Key Agreement.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Pub-
lic Key Cryptography – PKC ’06: The 9th International Conference on The-
ory and Practice of Public Key Cryptography, volume 3958 of Lecture Notes
in Computer Science, pages 395–409, New York, USA, April 2006. Springer-
Verlag.

[PV07] Sylvain Pasini and Serge Vaudenay. Hash-and-sign with Weak Hashing Made
Secure. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, ACISP
’07: The 12th Australasian Conference on Information Security and Privacy,
volume 4586 of Lecture Notes in Computer Science, pages 338–354, Townsville,
Australia, 2007. Springer-Verlag.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive sys-
tems and its application to secure message transmission. In IEEE Symposium
on Security and Privacy, pages 184–, 2001.

259

http://lasecwww.epfl.ch/

Sylvain Pasini

[QS01] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards. In Isabelle At-
tali and Thomas P. Jensen, editors, Smart Card Programming and Security,
International Conference on Research in Smart Cards, E-smart 2001, Cannes,
France, September 19-21, 2001, Proceedings, volume 2140 of Lecture Notes in
Computer Science, pages 200–210. Springer, 2001.

[Riv91] Ronald L. Rivest. The MD4 Message Digest Algorithm. In Alfred J. Menezes
and Scott A. Vanstone, editors, Advances in Cryptology – CRYPTO ’90: The
10th Annual International Cryptology Conference, volume 537 of Lecture Notes
in Computer Science, pages 303–311, Santa Barbara, California, U.S.A., 1991.
Springer-Verlag.

[Riv92] Ronald L. Rivest. The MD5 message digest algorithm. Technical Report
Internet RFC-1321,IETF, 1992.

[Rog95] Phillip Rogaway. Bucket Hashing and its Application to Fast Message Authen-
tication. In Don Coppersmith, editor, Advances in Cryptology – CRYPTO ’95:
The 15th Annual International Cryptology Conference, volume 963 of Lecture
Notes in Computer Science, pages 29–42, Santa Barbara, California, U.S.A.,
August 1995. Springer-Verlag.

[Rog06] Phillip Rogaway. Formalizing Human Ignorance: Collision-Resistant Hashing
without the Keys. In Phong Quang Nguyen, editor, VietCrypt ’06: Interna-
tional Conference on Cryptology, volume 4341 of Lecture Notes in Computer
Science, pages 221–228, Hanoi, Vietnam, September 2006. Springer-Verlag.

[RS84] Ronald L. Rivest and Adi Shamir. How to Expose an Eavesdropper. Commun.
ACM, 27(4):393–394, 1984.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM, 21(2):120–126, Februar 1978.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
Colin Boyd, editor, Advances in cryptology – ASIACRYPT ’01: The 7th In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security, volume 2248 of Lecture Notes in Computer Science, pages
552–565, Gold Coast, Australia, January 2001. Springer-Verlag.

[RWSN07] Mohammad Reza Reyhanitabar, Shuhong Wang, and Reihaneh Safavi-Naini.
Non-interactive Manual Channel Message Authentication Based on eTCR
Hash Functions. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors,
ACISP ’07: The 12th Australasian Conference on Information Security and

260

Bibliography

Privacy, volume 4586 of Lecture Notes in Computer Science, pages 385–399,
Townsville, Australia, 2007. Springer-Verlag.

[SA99] Frank Stajano and Ross Anderson. The resurrecting duckling: Security is-
sues for ad-hoc wireless networks. In Bruce Christianson, Bruno Crispo,
James A. Malcolm, and Michael Roe, editors, Security Protocols, 7th Inter-
national Workshop Proceedings, volume 1796 of Lecture Notes in Computer
Science, pages 172–194, Cambridge, UK, 1999. Springer-Verlag.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
Designated-Verifier Signatures. In Chi-Sung Laih, editor, Advances in cryptol-
ogy – ASIACRYPT ’03: The 9th International Conference on the Theory and
Application of Cryptology and Information Security, volume 2894 of Lecture
Notes in Computer Science, pages 523–542, Taipei, Taiwan, January 2003.
Springer-Verlag.

[Sch90] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards.
In Gilles Brassard, editor, Advances in Cryptology – CRYPTO ’89: The 9th
Annual International Cryptology Conference, volume 435 of Lecture Notes in
Computer Science, pages 239–252, Santa Barbara, California, U.S.A., 1990.
Springer-Verlag.

[Sch91] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal
of Cryptology, 4(3):161–174, 1991.

[Sha49] C. E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.
J., 28:657–715, 1949.

[SHA93] Secure hash standard. Federal Information Processing Standard, Publication
180, U.S. Department of Commerce, National Institute of Standards and Tech-
nology, 1993.

[SHA95] Secure hash standard. Federal Information Processing Standard, Publication
180-1, U.S. Department of Commerce, National Institute of Standards and
Technology, 1995.

[Sho04] Victor Shoup. Sequences of Games: A Tool for Taming Complexity
in Security Proofs. Cryptology ePrint Archive, Report 2004/332, 2004.
http://eprint.iacr.org/.

[Smu90] Peter Smulders. The Threat of Information Theft by Reception of Electro-
magnetic Radiation from RS-232 Cables. Computers and Security, 9(1):53–58,
1990.

261

Sylvain Pasini

[SSN08] Siamak Fayyaz Shahandashti and Reihaneh Safavi-Naini. Construction of Uni-
versal Designated-Verifier Signatures and Identity-Based Signatures from Stan-
dard Signatures. In Ronald Cramer, editor, Public Key Cryptography – PKC
’08: The 11th International Conference on Theory and Practice of Public Key
Cryptography, volume 4939 of Lecture Notes in Computer Science, pages 121–
140, Barcelona, Spain, March 2008. Springer-Verlag.

[SSNB07] Siamak Fayyaz Shahandashti, Reihaneh Safavi-Naini, and Joonsang Baek.
Concurrently-secure credential ownership proofs. In Feng Bao and Steven
Miller, editors, ASIACCS ’07: Proceedings of the 2nd ACM symposium on
Information, computer and communications security, pages 161–172, Singa-
pore, 2007. ACM Press.

[Sti91] Douglas R. Stinson. Universal Hashing and Authentication Codes. In Joan
Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91: The 11th Annual
International Cryptology Conference, volume 576 of Lecture Notes in Computer
Science, pages 74–85, Santa Barbara, California, U.S.A., 1991. Springer-Verlag.

[Sti94] Douglas R. Stinson. Universal Hashing and Authentication Codes. In Designs,
Codes and Cryptography, volume 4, pages 369–380, 1994.

[SWT01] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on SSH. In SSYM’01: Proceedings of the 10th
conference on USENIX Security Symposium, pages 25–25, Berkeley, CA, USA,
2001. USENIX Association.

[Tan07] Hidema Tanaka. Information Leakage Via Electromagnetic Emanations and
Evaluation of Tempest Countermeasures. In Patrick Drew McDaniel and
Shyam K. Gupta, editors, Information Systems Security, Third International
Conference, ICISS 2007, Delhi, India, December 16-20, 2007, Proceedings,
volume 4812 of Lecture Notes in Computer Science, pages 167–179. Springer,
2007.

[TYH04] Shiang-Feng Tzeng, Cheng-Ying Yang, and Min-Shiang Hwang. A nonrepu-
diable threshold multi-proxy multi-signature scheme with shared verification.
Future Generation Comp. Syst., 20(5):887–893, 2004.

[VAN06] Jukka Valkonen, N. Asokan, and Kaisa Nyberg. Ad Hoc Security Association
for Groups. In Levente Buttyán, Virgil D. Gligor, and Dirk Westhoff, editors,
Security and Privacy in Ad-Hoc and Sensor Networks, Third European Work-
shop, ESAS 2006, volume 4357 of Lecture Notes in Computer Science, pages
150–164, Hamburg, Germany, September 2006. Springer-Verlag.

[Vau05a] Serge Vaudenay. On Bluetooth Repairing: Key Agreement based on
Symmetric-Key Cryptography. In Dengguo Feng, Dongdai Lin, and Moti Yung,

262

Bibliography

editors, Conference on Information Security and Cryptology, First SKLOIS
Conference: CISC ’05, volume 3822 of Lecture Notes in Computer Science,
pages 1–9, Beijing, China, December 2005. Springer-Verlag.

[Vau05b] Serge Vaudenay. Secure Communications over Insecure Channels Based On
Short Authenticated Strings. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO ’05: The 25th Annual International Cryptology Conference, volume
3621 of Lecture Notes in Computer Science, pages 309–326, Santa Barbara,
California, U.S.A., August 2005. Springer-Verlag.

[Vau06] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for
Communications Security. Springer-Verlag, 2006.

[Vau07] Serge Vaudenay. E-Passport Threats. IEEE Security and Privacy Magazine,
5(6):61–64, 2007.

[vHP92] Eugène van Heyst and Torben P. Pedersen. How to make efficient fail-stop
signatures. In EUROCRYPT, pages 366–377, 1992.

[VP09] Martin Vuagnoux and Sylvain Pasini. Compromising Electromagnetic Emana-
tions of Wired and Wireless Keyboards. In Proceedings of the 18th USENIX
Security Symposium, August 10-14, 2009, Montreal, Canada. USENIX Asso-
ciation, 2009.

[VV07] Serge Vaudenay and Martin Vuagnoux. About Machine-Readable Travel Doc-
uments. In ICS ’07, Lecture Notes in Computer Science. Springer-Verlag,
2007.

[WBD05] Yongdong Wu, Feng Bao, and Robert H. Deng. Secure human communications
based on biometrics signals. In Ryôichi Sasaki, Sihan Qing, Eiji Okamoto,
and Hiroshi Yoshiura, editors, Security and Privacy in the Age of Ubiquitous
Computing, IFIP TC11 20th International Conference on Information Security
(SEC 2005), May 30 - June 1, 2005, Chiba, Japan, pages 205–221. Springer,
2005.

[WC81] Mark N. Wegman and Larry Carter. New Hash Functions and Their Use in
Authentication and Set Equality. Journal of Computer and System Sciences,
22(3):265–279, 1981.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT ’05: The 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, vol-
ume 3494 of Lecture Notes in Computer Science, pages 1–18, Aarhus, Denmark,
2005. Springer-Verlag.

263

Sylvain Pasini

[WSN08] Shuhong Wang and Reihaneh Safavi-Naini. New Results on Unconditionally
Secure Multireceiver Manual Authentication. Cryptology ePrint Archive, Re-
port 2008/039, 2008. http://eprint.iacr.org/.

[WUS06] Association Models Supplement to the Certified
Wireless Universal Serial Bus Specification, 2006.
http://www.usb.org/developers/wusb/wusb_2007_0214.zip.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash func-
tions. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT ’05:
The 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, volume 3494 of Lecture Notes in Computer Science,
pages 19–35, Aarhus, Denmark, 2005. Springer-Verlag.

[WYY05a] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in the full SHA1.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO ’05: The 25th
Annual International Cryptology Conference, volume 3621 of Lecture Notes in
Computer Science, pages 17–36, Santa Barbara, California, U.S.A., August
2005. Springer-Verlag.

[WYY05b] Xiaoyun Wang, Xiuyuan Yu, and L. Y. Yin. Efficient collision search attacks
on SHA-0. In Victor Shoup, editor, Advances in Cryptology – CRYPTO ’05:
The 25th Annual International Cryptology Conference, volume 3621 of Lecture
Notes in Computer Science, pages 1–16, Santa Barbara, California, U.S.A.,
August 2005. Springer-Verlag.

[ZJC00] Philip Zimmermann, Alan Johnston, and Jon Callas. ZRTP: Media Path
Key Agreement for Secure RTP draft-zimmermann-avt-zrtp-04, March 2000.
http://www3.tools.ietf.org/html/draft-zimmermann-avt-zrtp-04.

[ZZT05] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations revis-
ited. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, Proceedings
of the 12th ACM Conference on Computer and Communications Security, CCS
2005, Alexandria, VA, USA, November 7-11, 2005, pages 373–382. ACM, 2005.

264

http://eprint.iacr.org/
http://www.usb.org/developers/wusb/wusb_2007_0214.zip
http://www3.tools.ietf.org/html/draft-zimmermann-avt-zrtp-04

Glossary

Security models:
PKI Public-key Infrastructure
CRS Common Reference String (model)
ROM Random Oracle Model

Hash functions:
CRHF Collision Resistant Hash Function
WCR Weakly Collision Resistant (hash function)
TCR Target Collision Resistant (hash function)
UOWHF Universal One-Way Hash Function
eTCR enhanced Target Collision Resistant (hash function)

Message authentication protocols:
MAP Message Authentication Protocol
UMAP Unilateral Message Authentication Protocol
IMAP Interactive (unilateral) Message Authentication Protocol
NIMAP Non-Interactive (unilateral) Message Authentication Protocol
MMA Message Mutual-Authentication
MCA Message Cross-Authentication
GMA Group Message Authentication
GMAP Group Message Authentication Protocol

265

Sylvain Pasini

SAS-based protocols:
SAS Short Authenticated String
SAS-MMA SAS-based MMA
SAS-MCA SAS-based MCA
SAS-GMA SAS-based GMA

Key agreements:
KA Key Agreement
DH Diffie-Hellman (key agreement protocol)
AKA Authenticated Key Agreement
SAS-AKA SAS-based AKA
GKA Group Key Agreement
BD Burmester-Desmedt (group key agreement protocol)
SAS-GKA SAS-based GKA

Our SAS-based protocols:
PV-NIMAP The Pasini-Vaudenay NIMAP
PV-SAS-MMA The Pasini-Vaudenay SAS-MMA (protocol)
PV-SAS-MCA The Pasini-Vaudenay SAS-MCA (protocol)
PV-SAS-AKA The Pasini-Vaudenay AKA (protocol)
LP-SAS-GMA The Laur-Pasini SAS-GMA (protocol)
LP-SAS-GKA The Laur-Pasini SAS-GKA (protocol)

Proofs of knowledge:
ITM Interactive Turing Machine
ZK Zero-Knowledge
HVZK Honest Verifier Zero-Knowledge
dZK deniable Zero-Knowledge
GQ Guillou-Quisquater (Σ-protocol)

Signature schemes:
DS Digital Signature
FML Fixed Message Length
AML Arbitrary Message Length
EF Existential Forgery
UF Universal Forgery
KMA Known Message Attack
CMA Chosen Message Attack
ONTAP Online Non-Transferable Authentication Protocol
SRP Signature with Randomized Precomputation
DSA Digital Signature Algorithm

266

Glossary

Miscellaneous:
MANET Mobile Ad-hoc Network
PGP Pretty Good Privacy
GPG GNU Privacy Guard
SSH Secure Shell
PIN Personal Identification Number
WEP Wired Equivalent Privacy
WPA Wi-Fi Protected Access
WPS Wi-Fi Protected Setup
WUSB Wireless Universal Serial Bus

267

Sylvain Pasini

268

List of Figures

1.1 Setting up a Secure Communication Split in Two Goals. 2

1.2 Setting up a Secure Communication According to the Assumptions. . . 2

1.3 The Different Designations of SAS-based Cryptography. 5

2.1 The Shannon Model. 15

2.2 Authentication with Symmetric Cryptography. 15

2.3 The Merkle-Diffie-Hellman (MDH) Model. 16

2.4 The Diffie-Hellman (DH) Key Agreement Protocol. 16

2.5 The Public-Key Encryption Model. 18

2.6 The Public-Key Authentication Model. 18

2.7 The Folklore Man-in-the-Middle Attack During a Public-Key Transfer. 19

2.8 The Use of Certificates. 20

2.9 The Common Human Communications Channels 23

2.10 The Semi-Authenticated Key Transfer. 24

2.11 The SSH Public Key Authentication Model. 25

2.12 Semi-Authenticated Key Agreement Using Voice Records. 27

2.13 Man-In-The-Middle Attack (Simplified Version). 28

2.14 Distance Bounding Protocol. 29

2.15 Key Agreement Protocol Using Distance Bounding. 30

269

Sylvain Pasini

3.1 The CR Game. 35

3.2 The WCR Game. 35

3.3 The TCR Game. 38

3.4 The eTCR Game. 39

3.5 The Distinguishing Game. 40

3.6 A Combination Safe as Commitment Scheme. 42

3.7 The Semantic Hiding (SH) Game. 44

3.8 The Full Hiding (FH) Game. 44

3.9 The Semantic Binding (SB) Game. 45

3.10 The Full Binding (FB) Game. 46

3.11 Non-malleability Game Gnm
0 . 47

3.12 Non-malleability Game Gnm
1 . 47

3.13 Ideal Commitment: Commit Algorithm and Commitment Phase. 48

3.14 Ideal Commitment, Decommit Algorithm and Decommitment Phase. . 49

4.1 Communication Channels (Example with Three Participants). 63

4.2 Example of Oracle Queries for a Protocol Execution. 65

4.3 Stronger Properties on the Extra Channels used by Human Beings. . . 68

4.4 Stronger Properties on User-aided Extra Channels. 69

5.1 Three First Steps of the Recurrence (D and D0,D1,D2). 76

5.2 Generic One-Shot Attack. 78

5.3 Generic Multi-Shot Attack. 80

5.4 Generic Multi-Shot Attack against Non-Interactive Protocols. 82

6.1 Generic Security Game in the Stand Alone Model. 88

6.2 Idealized Implementation of a Dynamic GMAP. 90

6.3 The Canonical Interface for the Real World Adversary. 92

6.4 The Canonical Interface for Complex Settings. 96

270

List of Figures

6.5 Restriction Rules. 98

7.1 Unilateral Message Authentication Protocol (UMAP). 102

7.2 A CRHF-based NIMAP from Balfanz et al. 103

7.3 The Formalization of MANA II. 104

7.4 The New (WCR-based) NIMAP: PV-NIMAP. 106

7.5 An Example of Instantiation of PV-NIMAP. 106

7.6 Game Against PV-NIMAP. 107

7.7 Reduced Game Against PV-NIMAP. 107

7.8 Reduction to the SB Game (ĉ = c). 108

7.9 Reduction to the WCR Game (ĉ 6= c). 109

7.10 An HCR-based NIMAP. 111

7.11 An eTCR-based NIMAP. 111

7.12 The Original SAS-based IMAP: Vau-SAS-IMAP. 112

7.13 An ICR-based IMAP. 113

7.14 Implementation of Vau-SAS-IMAP with the Random Oracle Commitment. 117

7.15 SAS File Exchange. 118

8.1 Message Mutual-Authentication (MMA). 122

8.2 Message Cross-Authentication (MCA). 122

8.3 A Trivial MMA Protocol. 124

8.4 The Original SAS-based MCA Protocol: Vau-SAS-MCA. 124

8.5 The New SAS-based MMA Protocol: PV-SAS-MMA. 125

8.6 Alice∗ and the Target Instance (Alice or Bob). 126

8.7 Simulator Playing the Hiding Game (case when the target is Alice). . . 127

8.8 Simulator Playing the Binding Game (case when the target is Bob). . . 128

8.9 The New SAS-based MCA Protocol: PV-SAS-MCA. 130

8.10 The MANA IV Protocol. 135

271

Sylvain Pasini

9.1 Group Message Authentication (GMA). 138

9.2 The Group-MANA IV Protocol. 140

9.3 The New SAS-based GMA Protocol: LP-SAS-GMA. 141

9.4 Reduction to the NM Game Gnm

b for b ∈ {0, 1}. 145

10.1 The BD Group Key Agreement Protocol. 152

10.2 The Hoepman AKA Protocol. 153

10.3 The PGPfone AKA Protocol. 154

10.4 The DH Protocol Over a MCA Protocol. 155

10.5 An Optimal SAS-based AKA Protocol: PV-SAS-AKA. 157

10.6 An Optimal SAS-based GKA Protocol: LP-SAS-GKA. 158

10.7 Installation Overview of the Secure Voice over IP System. 160

10.8 The Main (a) and Call in Progress Windows (b). 161

10.9 The Implemented PV-SAS-AKA for Secure VoIP. 162

10.10 SAS Confirmation (Done on Both Sides). 162

11.1 The UF-KMA Game. 170

11.2 The EF-CMA Game. 171

11.3 Two Connected Interactive Turing Machines: an Interactive System. . . 173

12.1 ONTAP Non-Transferable Game. 185

12.2 ONTAP Unforgeability Game. 186

12.3 A Generic Σ-protocol. 188

12.4 The Guillou-Quisquater (GQ) Protocol. 189

12.5 The Schnorr Protocol. 191

12.6 A Generic Transform of Σ-protocol in the Standard Model. 192

12.7 A Generic Transform of Σ-protocol in the CRS model. 193

12.8 A Generic Transform of Σ-protocol in the RO model. 193

12.9 The Knowledge Extractor Ext. 194

272

List of Figures

12.10 The Simulator Simzk. 197

12.11 The iProof Protocol for ONTAP-RSA. 199

12.12 The iProof Protocol for ONTAP-ElGamal. 204

12.13 How to Distinguish an E-passport? (source: www.passeportsuisse.ch) . 206

12.14 E-passport Main Components (source: www.passeportsuisse.ch) 207

13.1 Hash-and-Sign Bringing Unpredictability (with a Random Oracle R). . 213

13.2 Reduction to the UF-KMA Game Against S. 214

13.3 Hash-and-Sign Extending the Domain (with a CRHF H). 215

13.4 Reduction to the EF-CMA Game Against S. 216

13.5 The Hash-and-Sign Paradigm (with a Random Oracle R). 216

13.6 The Randomized Hash-and-Sign Paradigm (with a TCR Function H). . 217

13.7 Reduction to EF-CMA or TCR Games (from EF-CMA). 218

13.8 The Randomized Hash-and-Sign Paradigm (with an eTCR Function H). 220

13.9 Summary of the Hash-and-Sign Paradigm Variants. 221

13.10 The (Weak) Hash-and-Sign Implementations S∗ (double boxed). 223

13.11 The Secure Construction based on S∗. 223

13.12 Reduction to the UF-KMA or eTCR Games (from EF-CMA). 225

13.13 Reduction to the eTCR Game . 227

13.14 The SRP Implementations. 229

13.15 SRP with Additional Random Coins. 230

13.16 SRP without Additional Random Coins. 230

13.17 Reduction to the EF-CMA Game Against the eTCR-based Scheme S∗. 231

13.18 The DSA Construction. 233

14.1 Overview of SAS-based Protocols. 239

273

Sylvain Pasini

274

List of Definitions

Definition 2.1 Security Attributes . 21

Definition 2.2 Communication Properties . 21

Definition 3.1 Collision Resistance . 34

Definition 3.2 Weakly Collision Resistance . 35

Definition 3.3 Almost Regular Hash Function . 36

Definition 3.4 Regular Hash Function . 36

Definition 3.5 Almost Universal Hash Function 36

Definition 3.6 Universal Hash Function . 37

Definition 3.7 Almost Strongly Universal Hash Function 37

Definition 3.8 Strongly Universal Hash Function 37

Definition 3.9 Almost XOR-Universal Hash Function 37

Definition 3.10 XOR-Universal Hash Function . 38

Definition 3.11 Target Collision Resistance . 38

Definition 3.12 Enhanced Target Collision Resistance 39

Definition 3.13 Pseudo-random Generator . 40

Definition 3.14 Completeness Property . 43

Definition 3.15 Hiding Property . 43

Definition 3.16 Semantic Hiding Commitment Scheme 43

275

Sylvain Pasini

Definition 3.17 Full Hiding Commitment Scheme 45

Definition 3.19 Binding property. 45

Definition 3.20 Semantic Binding Commitment Scheme 45

Definition 3.21 Full Binding Commitment Scheme 46

Definition 3.22 Min-Entropy . 56

Definition 3.23 Renyi Entropy . 56

Definition 4.1 Non-interactive Protocol . 63

Definition 4.2 Attack Cost. 66

Definition 5.7 Optimality in Term of Deception 84

Definition 5.8 Optimality in Term of Moves . 84

Definition 6.1 Ideal World Model . 89

Definition 6.2 Success in Deception . 90

Definition 6.3 Stand-Alone Security in Term of Deception 91

Definition 6.5 Universal Composability . 94

Definition 7.1 Unilateral Message Authentication 102

Definition 8.1 Message Mutual-Authentication 122

Definition 8.2 Message Cross-Authentication . 123

Definition 9.1 Group Message Authentication . 138

Definition 10.1 Two-Party Authenticated Key Agreement 150

Definition 10.2 Group Key Agreement . 150

Definition 11.1 UF-KMA Security . 170

Definition 11.2 EF-CMA Security . 170

Definition 11.3 Interactive Proof System . 173

Definition 11.4 Proof of Knowledge . 174

276

List of Definitions

Definition 11.5 Honest-Verifier Zero-Knowledge 174

Definition 11.6 Zero-Knowledge . 175

Definition 11.7 Proof of Knowledge in the CRS model 175

Definition 11.8 Zero-Knowledge in the CRS Model 176

Definition 11.9 Deniable Zero-Knowledge in the CRS Model 176

Definition 11.10 Deniable Zero-Knowledge Proof of Knowledge 177

Definition 12.1 Non-Transferability . 182

Definition 12.2 ONTAP . 183

Definition 12.3 Offline Non-Transferability of ONTAP 184

Definition 12.4 Unforgeability of ONTAP . 184

Definition 12.6 Σ-protocol . 188

Definition 12.7 κ(x)-weak Σ-protocol . 189

Definition 12.12 Generic RSA Signature Scheme 199

Definition 12.14 Generic ElGamal . 200

Definition 13.6 Signature with Randomized Precomputation 228

277

Sylvain Pasini

278

List of Theorems

Lemma 3.18 Semantic versus Full Hiding Properties 45

Lemma 3.24 Collisions on R outputs . 56

Lemma 3.25 Collisions on R outputs with respect to Renyi entropy 57

Lemma 3.26 Collisions on R outputs with respect to a PRG 57

Lemma 5.1 Collision Between Two Independent Random Variables 72

Lemma 5.2 SAS Values Should Belong to the Uniform Distribution 73

Theorem 5.3 Generic One-Shot Attack . 77

Theorem 5.4 Generic Multi-Shot Attack . 79

Theorem 5.5 Generic Multi-Shot Attack Against Non-Interactive Protocols . . 81

Lemma 5.6 One-Shot Attacks versus Multi-Shot Attacks 83

Theorem 6.4 Stand-Alone Security of a GMAP 91

Theorem 6.6 Universal Composability of a SAS-MAP 95

Corollary 6.7 Universal Composability of SAS-MAP in the CRS Model 97

Lemma 6.8 Security of Two-Party Message Cross-authentication Protocols . . 98

Theorem 6.9 Security of a SAS-MAP . 99

Theorem 7.2 Security of the CRHF-based NIMAP 103

Theorem 7.3 Security of MANA II . 104

279

Sylvain Pasini

Lemma 7.4 Stand-Alone Security of PV-NIMAP 105

Theorem 7.5 Security of PV-NIMAP . 109

Theorem 7.6 Security of the HCR-based NIMAP 110

Theorem 7.7 Security of the eTCR-based NIMAP 111

Theorem 7.8 Stand-Alone Security of Vau-SAS-IMAP 112

Theorem 8.3 Stand-Alone Security of PV-SAS-MMA 125

Lemma 8.4 Security of PV-SAS-MMA . 128

Theorem 8.5 Stand-Alone Security of PV-SAS-MCA 131

Theorem 8.6 Stand-Alone Security of Generic PV-SAS-MCA 133

Lemma 8.7 Security of PV-SAS-MCA . 133

Theorem 8.8 Stand-Alone Security of MANA IV 135

Theorem 9.2 Stand-Alone Security of LP-SAS-GMA 143

Lemma 9.3 Stand-Alone Security of LP-SAS-GMA (Part 1) 144

Lemma 9.4 Stand-Alone Security of LP-SAS-GMA (Part 2) 146

Lemma 9.5 Stand-Alone Security of LP-SAS-GMA (Part 3) 146

Theorem 9.6 Security of LP-SAS-GMA . 147

Theorem 10.3 Security of the AKA Construction 156

Theorem 12.5 ONTAP Construction . 186

Theorem 12.8 The GQ Weak-Σ-protocol . 190

Theorem 12.9 The Schnorr Weak-Σ-protocol . 190

Theorem 12.10 Generic Transform of Σ-protocol in the Standard Model 192

Theorem 12.11 Generic Transform of Σ-protocol in the CRS and RO Models . . . 192

Theorem 12.13 ONTAP-RSA . 199

Theorem 12.15 ONTAP-ElGamal . 204

Theorem 13.1 Hash-and-Sign Paradigm, Unpredictability 213

280

List of Theorems

Theorem 13.2 Hash-and-Sign Paradigm, Domain Extension 215

Theorem 13.3 Hash-and-Sign Paradigm . 216

Theorem 13.4 Randomized Hash-and-Sign Paradigm with a TCR Function . . . 217

Theorem 13.5 Randomized Hash-and-Sign Paradigm with an eTCR Function . . 224

Theorem 13.7 Randomized Hash-and-Sign Paradigm Recycling the Entropy . . . 229

281

Sylvain Pasini

282

Curriculum Vitæ

Personal Situation

Sylvain Pasini
Born December 06, 1980, in Lancy, Geneva.
Swiss nationality, married, one child.
sylvain@famillepasini.ch

Education

PhD Degree in Cryptography 2005-2009

École Polytechnique Fédérale de Lausanne (EPFL)
Fellowship from the Swiss National Science Foundation (SNSF)
Supervisor: Prof. Serge Vaudenay
PhD thesis: Secure Communications Using Authenticated Channels

EPF Engineer in Communication Systems (Master degree) 2002-2005

École Polytechnique Fédérale de Lausanne (EPFL)
I&C Faculty, Communication Systems Department

HES Engineer in Electronics 1996-2001

École d’Ingénieurs de Genève (EIG)
Electronic Department

Mandatory School 1985-1996

Cycle d’orientation des Marais, Onex, Geneva (7-9P)

École du Petit-Lancy, Geneva (3-6P)

École Cérésole, Petit-Lancy, Geneva (1-2E, 1-2P)

283

Sylvain Pasini

Awards

Kudelski Prize rewarding a Master project contributing significantly to the
field of cryptography and information system security.

2006

HES diploma decerned with 2002

Summa cum laude (mention très bien)
Best average grade of the EIG promotion 2002
ATG prize (Association des anciens élèves)
SIA prize (Société suisse des Ingénieurs et Architectes)
SIG prize (Services Industriels de Genève)
Charmilles Technologies prize

Academic Experience

Publications

• Keyboard Compromising Electromagnetic Emanations
Sylvain Pasini & Martin Vuagnoux.
Published in the proceedings of USENIX Security ’09 [Canada].

2009

• Efficient Deniable Authentication for Standard Signatures
Jean Monnerat, Sylvain Pasini & Serge Vaudenay.
Published in the proceedings of ACNS ’09 [France].

2009

• User-Aided Data Authentication
Sylvain Pasini & Sven Laur.
Published in the International Journal of Security and Networks.

2009

• SAS-Based Group Authentication and Key Agreement Protocols
Sylvain Pasini & Sven Laur.
Published in the proceedings of PKC ’08 [Spain].

2008

• Hash-and-Sign with Weak Hashing Made Secure
Sylvain Pasini & Serge Vaudenay.
Published in the proceedings of ACISP ’07 [Australia].

2007

• SAS-based Authenticated Key Agreement
Sylvain Pasini & Serge Vaudenay.
Published in the proceedings of PKC ’06 [U.S.A.].

2006

• An Optimal Non-interactive Message Authentication Protocol
Sylvain Pasini & Serge Vaudenay.
Published in the proceedings of CT-RSA’06 [U.S.A.].

2006

284

Curriculum Vitæ

Presentations

• Several oral presentations in conferences in U.S.A., Australia, and Europe.

• One invited talk at ENS-TA in Paris.

Teaching Activities

• Scientific Projects Supervision.
Student projects supervision.
Projects coordinator in the lab (semester and diploma).

2005-2008

• Cryptography and Security Course, 120+ students, EPFL.
Dr. Philippe Oechslin & Prof. Serge Vaudenay.
Teaching assistant.
(exercise sessions, exams preparations/corrections, gradings).

2007 & 2008

• Advanced Cryptography Course, EPFL
Prof. Serge Vaudenay.
Teaching assistant.
(exercise sessions, exams preparations/corrections, gradings).

2006 & 2007

• (Real Time) Embedded Systems Course, EPFL
René Beuchat.
Teaching assistant.
(hardware preparation, assistant for lab sessions and projects).

2004 & 2005

Contribution to the Research World

• Involved as external reviewer for several prestigious conferences.
(Crypto, Eurocrypt, Asiacrypt, Africacrypt, PKC, FSE, SAC, ACISP, ACNS, CHES,

ICALP, IWSec)

Professional Experience

Technic-Hobby (Geneva), the shop of my parents Since 1987
Consultant in radio controlled models. Manager during holidays.

Neidhart & Team Orion (Geneva) 1998 & 1999
Batteries matcher, storekeeper and employee of production.

Cantonal stewardship of Geneva 1997
Storekeeper for schools of Geneva.

285

Sylvain Pasini

Relevant Projects

Keyboard Compomising Electromagnetic Emanations 2008

with Martin Vuagnoux.
We analyze the electromagnetic emanations emitted by computer keyboards. We present four
different weaknesses on PS/2, USB, wireless, and laptop keyboards. Thanks to our practical
implementation we were able to recover 95% of the keystrokes up to 20 meters.

Secure Communications over Insecure Channels [...] 2005

for which I received the Kudelski Group Prize.
Prof. Serge Vaudenay, Master thesis, EPFL.
We analyze the security of generic protocols and propose new improved solutions.

Why textbook ElGamal and RSA encryption are insecure? 2004

Prof. Serge Vaudenay, Semester Project, EPFL.
We implement the attacks to illustrate they are not secure without a pre-
processing on the plaintext.

Ethernet/Internet embedded camera design 2002

René Beuchat, Semester Project, EPFL.
We build a Web server embedded in an FPGA to provide on the Internet images
from a CMOS camera.

Tumours detection and segmentation of MRI images 2001

for which I received the congratulations from the jury.
Prof. Michel Kocher, Diploma, EIG.
We design an automatic method to detect and extract tumours of a MRI scan
of the head.

Brain segmentation of MRI images 2001

Prof. Michel Kocher, Semester Project, EIG.
We design an automatic method to extract the brain of a MRI scan of the head.
This is the first application of the Mathematic Morphology in 3D.

286

Curriculum Vitæ

Computer Science Skills

Operating Systems Linux, Mac OS, Windows

Programming Languages Ada, C, C++, Java

Web development HTML, XML, PHP, CSS, Javascript, JSP

Hardware design VHDL, Quartus/SoPC, Leonardo Spectrum, ModelSim

Scientific Software Maple, Matlab

Networking Ethernet, TCP/IP and related protocols

Software Engineering UML

Reporting Software LATEX, Microsoft Office

Languages

French: mother tongue

English: written and spoken

Italian: spoken

German: written

Hobbies

RC models Radio controlled airplanes, helicopters and cars.
Designer, builder, and pilot of aerobatic airplanes.
Precision and freestyle aerobatics.
National team pilot for precision aerobatic (F3A). 2007
Participation at the F3A world championship in Argentina. 2007

Music Classical piano.

287

	Abstract/Résumé
	Acknowledgments/Remerciements
	Introduction
	SAS-Based Cryptography (Part I)
	Signatures Schemes (Part II)
	Keyboard Compromising Electromagnetic Emanations

	The Authentication Problem
	Basics in Cryptography
	Symmetric Cryptography
	Agreeing on a Secret Key without Confidential Channel
	Public-Key Cryptography

	Communication Channels
	Towards Usable Solutions to Setup Secure Communications
	Message Authentication
	Other Ways for Message Authentication
	Protocols Using Time Bounding
	Protocols Using Distance Bounding

	Setting up a Secure Communication in a Nutshell

	Preliminaries
	Notations
	Hash functions
	Collision Resistant Hash Functions
	Weakly Collision Resistant Hash Functions
	Keyed and Multi-Keyed Hash Functions
	Target Collision Resistant Hash Functions
	Enhanced Target Collision Resistant Hash Function

	Random Oracle Model
	Random Oracle
	Pseudo-random Generator

	Common Reference String Model
	Commitment Schemes
	(Tag-less) Commitment Model
	Tag-based Commitment Model
	Completeness, Hiding, and Binding Properties
	Non-Malleability
	Ideal Commitment Model
	Trapdoor Extractable Commitment Schemes
	Trapdoor Equivocable Commitment Schemes
	Trapdoor Commitment Model
	Examples

	Entropies
	Collisions on the Outputs of a Random Oracle

	I SAS-based Message Authentication and Key Agreement Protocols
	Security Model
	Network Model
	Communication Model
	Adversarial Model
	Authenticated Channel Models
	Weak Authenticated Channels
	Stronger Authenticated Channels
	Examples
	SAS-based Cryptography

	On the Optimal Entropy of Authenticated Communication
	Probability of Collision Between Random Variables
	A Generic One-Shot Attack
	A Generic Multi-Shot Attack
	A Generic Multi-Shot Attack Against Non-Interactive Protocols
	A Short Overview on Generic Attacks Against Unilateral Protocols
	Extension to Two-Party Bilateral Protocols
	Optimality of a Protocol
	Unconditional Security

	Stand-Alone Security versus Complex Settings Security
	Stand-Alone Security
	Security in Complex Settings
	Reminder on Universal Composability
	Composability Guarantees of a SAS-based Message Authentication Protocol

	SAS-based Protocol Security in a Nutshell

	Two-Party Unilateral Message Authentication
	Unilateral Message Authentication Primitive
	Prior Work on Non-Interactive Protocols
	A CRHF-based NIMAP
	A NIMAP with Strong Authentication: MANA

	An Optimal NIMAP: PV-NIMAP
	Following Works
	On Interactive Protocols
	Applications

	Two-party Bilateral Message Authentication
	Bilateral Message Authentication Primitives
	Message Mutual-Authentication
	Message Cross-Authentication
	MCA versus MMA Protocols

	Prior Work
	A Trivial MMA
	The Original SAS-based MCA Protocol: Vau-SAS-MCA

	An Optimal MMA Protocol: PV-SAS-MMA
	An Optimal MCA Protocol: PV-SAS-MCA
	Following Works
	Applications

	Group Message Authentication
	Group Message Authentication Primitive
	Prior Work
	Group-MANA IV

	An Optimal GMA Protocol: LP-SAS-GMA
	Applications

	From Message Authentication to Key Agreement
	Authenticated Key Agreement Primitive
	(Non-Authenticated) Key Agreement
	The Diffie-Hellman Key Agreement Protocol
	The Burmester-Desmedt Group Key Agreement Protocol

	Prior Authenticated Key Agreements
	The Hoepman AKA Protocol
	PGPfone

	KA+MA = AKA
	An Optimal AKA Protocol: PV-SAS-AKA
	An Optimal GKA Protocol: LP-SAS-GKA
	Applications

	II Signatures Schemes
	Definitions of Digital Signatures and Interactive Proofs
	Overview of Digital Signatures
	Digital Signature Schemes Formally
	FML-DS versus AML-DS
	Adversarial Model

	Interactive Proofs (in the Standard Model)
	Binary Relation and Binary Language
	Interactive Turing Machines
	Interactive Proof Systems
	Proof of Knowledge
	Zero-Knowledge

	Interactive Proofs in the Common Reference String Model
	Deniability in Zero-Knowledge Proofs

	Preserving the Privacy of Signed Documents
	Related Work
	On Non-Transferability
	Offline Non-Transferable Authentication Protocol (ONTAP)
	Deniable ZK from -Protocols
	-Protocols
	Weak -Protocols
	Generic Transform of -Protocols

	ONTAP Constructions in Practice
	ONTAP with a Generic RSA Signature
	ONTAP with a Generic ElGamal Signature

	Comparison with Other Works
	Application to Electronic Passports
	Passive versus Active Authentication
	Optional Basic and Extended Access Controls
	E-Passport Passive Authentication Issue
	Deniable Zero-Knowledge in Signature Verification

	Building Secure Schemes based on Weak Hash Functions
	Hash-and-Sign variants Today
	Adding Unpredictability
	Domain Extension
	Both at the Same Time
	Randomized Hash-and-Sign Paradigm
	Improved Randomized Hash-and-Sign Paradigm
	Analysis of the Above Existing Solutions

	Modeling (Weak) Hash Functions
	Weak Random Oracle Hashing

	Strong Signature Schemes with Weak Hashing
	The Entropy Recycling Technique
	Applications
	A Concrete Example with DSA

	Conclusion
	SAS-based Cryptography
	Preserving the Privacy of Signed Documents
	Strengthening Signature Schemes Based on the Hash-and-Sign Paradigm
	Final Notes and Further Work

	Birthday Paradox
	Bibliography
	Glossary
	List of Figures
	List of Definitions
	List of Theorems
	Curriculum Vitæ

