An Optimal Non-Interactive Message Authentication Protocol

Sylvain Pasini and Serge Vaudenay

EPFL / LASEC

February the 16th 2006

RSACONFERENCE2006

• Suppose Alice and Bob want to communicate securely:

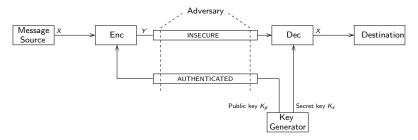
- No prior exchanged key
- Insecure channel:
 - Adversaries have full control.
- Extra channel:
 - confidentiality, integrity, authenticity?

Why Do We Need Authentication Protocols?

Possible Extra Channels

	Interactive		Non-interactive	
	Encounter	Telephone	Voice mail	Email
Authenticity	\checkmark	\checkmark	\checkmark	
Confidentiality	\checkmark			
Low cost		\checkmark	\checkmark	\checkmark
Availability			\checkmark	\checkmark

Using symmetric cryptography, we need confidentiality:


 $\rightarrow\,$ encounter.

Using public-key cryptography, we need authentication:

 \rightarrow e.g. voice mail.

The semi-authenticated key transfer:

- We no longer need confidentiality.
- An authenticated (extra) channel is enough.

In a nutshell:

- Setup a secure communication
 - \rightarrow Exchange and authenticate a public key.
- Exchange by phone is tedious (1024 bits).

Objective

Reduce the amount of authenticated data by using a message authentication protocol.

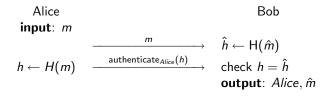
For practical reasons, we prefer a non-interactive protocol.

How does a message authentication protocol work?

- It sends the message through the insecure channel.
- The authentication is done by authenticating a shorter string.

Channels model:

RSA CONFERENCE 2006


Existing Protocol

RSACONFERENCE2006

5-0-0

SSH and GPG use the following:

The symbol ^ on a received message indicates that it may be different from the one originally sent. (e.g. when an attack is performed)


What about Security?

Known message attack:

H only has to be weakly collision resistant (80 bits).

Chosen message attack:

H must be collision resistant (160 bits).

	******************	* *** ***************************
Sylvain Pasini - EPFL	9	RSA CONFERENCE 2006

Existing protocol

What about Security?

Known message attack:

H only has to be weakly collision resistant (80 bits).

Chosen message attack:

H must be collision resistant (160 bits).

+@<@<@+@<@+@<@>@+@<@	*****	
Sylvain Pasini - EPFL	9	RSA CONFERENCE 2006

A Generic Attack

RSACONFERENCE2006

A Generic Attack

Generic Attack

The protocol uses k authenticated bits. The adversary is limited to Q_A runs with Alice. The adversary is bounded by a time complexity T.

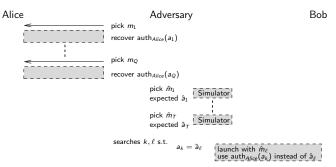
Theorem

For a non-interactive message authentication protocol which uses a weak authenticated channel, there exists a generic attack s.t.

$$\Pr[\text{success}] \approx 1 - e^{-\frac{T \cdot Q_A}{2^k}}$$

No protocol can remain secure when

Television of the second second


 $T \cdot Q_A$ is non negligible against 2^k

If a protocol reaches this security level, it is **optimal**.

+0+0+0+0+0+0+0		***********************
Sylvain Pasini - EPFL	11	RSA CONFERENCE 2006

Instances of Bob can be simulated.

Success probability:

$$\mathsf{Pr}[\mathsf{success}] pprox 1 - e^{-rac{T \cdot \mathcal{Q}_A}{2^k}}$$

The Proposed Protocol

RSACONFERENCE2006

0

Overview

Main idea

Avoid the authenticated message to be predictable by adding randomness.

Given an input message m:
commit on m yield c and d (not deterministic).
reveal c and d. given (c, d), anyone can recover m (deterministic)
authenticate H(c) c is not foreseeable, thus H(c) neither.

- When Alice wants to commit on *m*, she places *m* inside the safe and closes it.
- The safe is the commit object *c*, it can be given to Bob.
- When Alice wants to reveal *m*, she gives the combination *d*.

Hiding property:

m cannot be known before c is opened

Binding property:

m cannot be modified after c is closed

There are two algorithms:

- $(c,d) \leftarrow \operatorname{commit}(m)$
- $m \leftarrow \operatorname{open}(c, d)$

Completeness property:

 $\forall m, (c, d) \leftarrow \operatorname{commit}(m),$

$$m = \operatorname{open}(c, d)$$

Binding property:

For any
$$m$$
, $(c, d) \leftarrow \text{commit}(m)$,
it is impossible to find d' s.t. :
 $m' \neq m$ and $m' \neq \bot$
where $m' \leftarrow \text{open}(c, d')$

RSA CONFERENCE 2006

The Proposed Protocol The Proposed Protocol

Example using a random oracle:

$$\begin{array}{ccc} \text{pick } r \\ c \leftarrow H'(m||r) & \xrightarrow{c||m||r} & \text{check } \hat{c} = H'(\hat{m}||\hat{r}) \\ h \leftarrow H(c) & \xrightarrow{\text{authenticate}_{Alice}(h)} & \text{check } h = H(\hat{c}) \end{array}$$

The Proposed Protocol Intuitive Security Proof

$$\begin{array}{c} \text{input: } m\\ (c,d) \leftarrow \text{commit}(m) & \xrightarrow{c||d} & \hat{m} \leftarrow \text{open}(\hat{c},\hat{d})\\ & h \leftarrow H(c) & \xrightarrow{\text{authenticate}_{Alice}(h)} & \text{check } h = H(\hat{c})\\ & \text{output: } Alice, \hat{m} \end{array}$$

An adversary can only replace (c, d) by (\hat{c}, \hat{d})

Two cases:

By choosing ĉ = c, he fullfils the condition H(ĉ) = h He must find a d̂ which defeats the binding property (p ≤ ε_c).
By choosing ĉ ≠ c, he avoids the binding problem. He must find a ĉ s.t. H(ĉ) = h (p ≤ ε_h).

RSA CONFERENCE 2006

Security

Overall Security

Consider an adversary bounded by complexity T and Q_A protocol runs with Alice.

He succeeds with probability at most $p \leq Q_A(\epsilon_c + \epsilon_h)$.

We assume that the commitment scheme is (T, ϵ_c) -binding and the hash function is (T, ϵ_h) -weakly collision resistant.

Note that

• ϵ_c can be as small as desired

 \boldsymbol{c} is sent over the broadband channel

• *h* must be as short as possible

h is sent over the (expensive) authenticated channel

- Distant host authentication, e.g. SSH
- E-mail authentication, e.g. GPG signature

- Secure e-mail, e.g. GPG encryption
- Secure voice over IP, e.g. PGPfone
- Digital signature, e.g. RSA signature with MD5:

$$\operatorname{Sig}'(m) = c ||d||\operatorname{Sig}(c)$$

Summary of our results

A new non-interactive protocol which

• only requires a weakly collision resistant hash function.

- is secure against chosen message attacks.
- is optimal.

RSACONFERENCE2006